• 제목/요약/키워드: Crack Localization

검색결과 49건 처리시간 0.022초

Crack location in beams by data fusion of fractal dimension features of laser-measured operating deflection shapes

  • Bai, R.B.;Song, X.G.;Radzienski, M.;Cao, M.S.;Ostachowicz, W.;Wang, S.S.
    • Smart Structures and Systems
    • /
    • 제13권6호
    • /
    • pp.975-991
    • /
    • 2014
  • The objective of this study is to develop a reliable method for locating cracks in a beam using data fusion of fractal dimension features of operating deflection shapes. The Katz's fractal dimension curve of an operating deflection shape is used as a basic feature of damage. Like most available damage features, the Katz's fractal dimension curve has a notable limitation in characterizing damage: it is unresponsive to damage near the nodes of structural deformation responses, e.g., operating deflection shapes. To address this limitation, data fusion of Katz's fractal dimension curves of various operating deflection shapes is used to create a sophisticated fractal damage feature, the 'overall Katz's fractal dimension curve'. This overall Katz's fractal dimension curve has the distinctive capability of overcoming the nodal effect of operating deflection shapes so that it maximizes responsiveness to damage and reliability of damage localization. The method is applied to the detection of damage in numerical and experimental cases of cantilever beams with single/multiple cracks, with high-resolution operating deflection shapes acquired by a scanning laser vibrometer. Results show that the overall Katz's fractal dimension curve can locate single/multiple cracks in beams with significantly improved accuracy and reliability in comparison to the existing method. Data fusion of fractal dimension features of operating deflection shapes provides a viable strategy for identifying damage in beam-type structures, with robustness against node effects.

고유진동수 이용 손상추정법과 모드형상 이용 손상추정법에 의한 PSC 보의 비파괴 손상검색 (Nondestructive Damage Detection in PSC Beams : Frequency-Based Method Versus Mode-Shape-Based Method)

  • 김정태;류연선;조현만
    • 한국전산구조공학회논문집
    • /
    • 제15권1호
    • /
    • pp.43-58
    • /
    • 2002
  • PSC 보의 비파괴 손상검색을 위한 고유진동수 이용 손상추정법과 모드형상 이용 손상추정법을 제시하였다. 먼저, 고유진동수의 변화를 사용하여 손상의 위치를 예측하는 알고리즘과 고유진동수 1차 섭동 이론에 근거하여 균열크기를 예측하는 알고리즘을 요약하였다 다음으로, 모드형상의 변화로부터 모드민감도의 변화를 감지하고 이를 통해 손상의 위치와 크기를 추정하는 손상지수 알고리즘을 요약하였다. PSC 보의 유한요소모델을 사용하는 수치실험을 통해 고유 진동수 이용 손상추정법과 모드형상 이용 손상추정 법의 정확성을 검증하였다. 분석결과 두 방법 모두 실험 대상 구조에 도입된 균열의 위치를 정확하게 예측하였으며 균열의 크기를 비교적 근사하게 예측하였다.

Damage localization and quantification in beams from slope discontinuities in static deflections

  • Ma, Qiaoyu;Solis, Mario
    • Smart Structures and Systems
    • /
    • 제22권3호
    • /
    • pp.291-302
    • /
    • 2018
  • This paper presents a flexibility based method for damage identification from static measurements in beam-type structures. The response of the beam at the Damaged State is decomposed into the response at the Reference State plus the response at an Incremental State, which represents the effect of damage. The damage is localized by detecting slope discontinuities in the deflection of the structure at the Incremental State. A denoising filtering technique is applied to reduce the effect of experimental noise. The extent of the damage is estimated through comparing the experimental flexural stiffness of the damaged cross-sections with the corresponding values provided by analytical models of cracked beams. The paper illustrates the method by showing a numerical example with two cracks and an experimental case study of a simply supported steel beam with one artificially introduced notch type crack at three damage levels. A Digital Image Correlation system was used to accurately measure the deflections of the beam at a dense measurement grid under a set of point loads. The results indicate that the method can successfully detect and quantify a small damage from the experimental data.

Monitoring of fracture propagation in brittle materials using acoustic emission techniques-A review

  • Nejati, Hamid Reza;Nazerigivi, Amin;Imani, Mehrdad;Karrech, Ali
    • Computers and Concrete
    • /
    • 제25권1호
    • /
    • pp.15-27
    • /
    • 2020
  • During the past decades, the application of acoustic emission techniques (AET) through the diagnosis and monitoring of the fracture process in materials has been attracting considerable attention. AET proved to be operative among the other non-destructive testing methods for various reasons including their practicality and cost-effectiveness. Concrete and rock structures often demand thorough and real-time assessment to predict and prevent their damage nucleation and evolution. This paper presents an overview of the work carried out on the use of AE as a monitoring technique to form a comprehensive insight into its potential application in brittle materials. Reported properties in this study are crack growth behavior, localization, damage evolution, dynamic character and structures monitoring. This literature review provides practicing engineers and researchers with the main AE procedures to follow when examining the possibility of failure in civil/resource structures that rely on brittle materials.

980 MPa급 이상조직강의 신장 플랜지성에 미치는 템퍼링의 영향 (Effect of Tempering on Stretch-Flangeability of 980 MPa Grade Dual-Phase Steel)

  • 이건희;백종희;송은지;나선형;박봉준;김주영;권용재;신상용;이정구
    • 한국재료학회지
    • /
    • 제30권6호
    • /
    • pp.292-300
    • /
    • 2020
  • In this study, the effect of tempering on the stretch-flangeability is investigated in 980 MPa grade dual-phase steel consisting of ferrite and martensite phases. During tempering at 300 ℃, the strength of ferrite increases due to the pinning of dislocations by carbon atoms released from martensite, while martensite is softened as a consequence of a reduction in its carbon super-saturation. This strength variation results in a considerable increase in yield strength of the steel, without loss of tensile strength. The hole expansion test shows that steel tempered for 20 min (T20 steel) exhibits a higher hole expansion ratio than that of steel without tempering (T0 steel). In T0 steel, severe plastic localization in ferrite causes easy pore formation at the ferrite-martensite interface and subsequent brittle crack propagation through the highly deformed ferrite area during hole expansion testing; this propagation is mainly attributed to the large difference in hardness between ferrite and martensite. When the difference in hardness is not so large (T20 steel), on the other hand, tempered martensite can be considerably deformed together with ferrite, thereby delaying pore formation and hindering crack propagation by crack blunting. Eventually, these different deformation and fracture behaviors contribute to the superior stretch-flangeability of T20 steel.

Experimental and numerical disbond localization analyses of a notched plate repaired with a CFRP patch

  • Abderahmane, Sahli;Mokhtar, Bouziane M.;Smail, Benbarek;Wayne, Steven F.;Zhang, Liang;Belabbes, Bachir Bouiadjra;Boualem, Serier
    • Structural Engineering and Mechanics
    • /
    • 제63권3호
    • /
    • pp.361-370
    • /
    • 2017
  • Through the use of finite element analysis and acoustic emission techniques we have evaluated the interfacial failure of a carbon fiber reinforced polymer (CFRP) repair patch on a notched aluminum substrate. The repair of cracks is a very common and widely used practice in the aeronautics field to extend the life of cracked sheet metal panels. The process consists of adhesively bonding a patch that encompasses the notched site to provide additional strength, thereby increasing life and avoiding costly replacements. The mechanical strength of the bonded joint relies mainly on the bonding of the adhesive to the plate and patch stiffness. Stress concentrations at crack tips promote disbonding of the composite patch from the substrate, consequently reducing the bonded area, which makes this a critical aspect of repair effectiveness. In this paper we examine patch disbonding by calculating the influence of notch tip stress on disbond area and verify computational results with acoustic emission (AE) measurements obtained from specimens subjected to uniaxial tension. The FE results showed that disbonding first occurs between the patch and the substrate close to free edge of the patch followed by failure around the tip of the notch, both highest stress regions. Experimental results revealed that cement adhesion at the aluminum interface was the limiting factor in patch performance. The patch did not appear to strengthen the aluminum substrate when measured by stress-strain due to early stage disbonding. Analysis of the AE signals provided insight to the disbond locations and progression at the metal-adhesive interface. Crack growth from the notch in the aluminum was not observed until the stress reached a critical level, an instant before final fracture, which was unaffected by the patch due to early stage disbonding. The FE model was further utilized to study the effects of patch fiber orientation and increased adhesive strength. The model revealed that the effectiveness of patch repairs is strongly dependent upon the combined interactions of adhesive bond strength and fiber orientation.

능동센서 배열을 이용한 저온 반복하중 환경 항공기 날개 구조물의 손상 탐지 (Active-Sensing Based Damage Monitoring of Airplane Wings Under Low-Temperature and Continuous Loading Condition)

  • 전준영;정휘권;박규해;하재석;박찬익
    • 비파괴검사학회지
    • /
    • 제36권5호
    • /
    • pp.345-352
    • /
    • 2016
  • 높은 고도에서 운행되는 항공기는 -$50^{\circ}C$이하의 극저온 피로환경에 노출된다. 이때 반복하중을 통해 발생되는 크랙과 같은 미세결함은 항공기 구조물의 물성변화를 야기하고 구조물 파단과 같은 심각한 구조적 결함을 야기한다. 따라서 효율적인 구조물의 유지보수 및 수명 예측을 위해 구조물의 지속적인 상태진단이 필요하다. 본 연구에서는 실제 항공기 운행조건과 유사한 극저온 피로환경에서 항공기 날개의 구조 건전성 모니터링을 수행하였다. 초기 결함 탐지를 위해 사각배열 압전구동기 및 센서를 구조물 하단에 부착한 뒤, 유도초음파 기반 능동센싱 기법을 통해 손상에 의한 산란 및 반사파를 측정하였다. 이후 통계학적 모델 분석과 위상배열기법을 통해 손상 발생 시점을 파악 및 손상 위치 탐지를 실시하였다. 또한, 극저온 환경에서의 센서의 생존성 파악과 구조 건전성 모니터링 결과의 신뢰성 향상을 위해 센서자가진단을 실시하였다. 실험 결과, 제안된 기법을 통해 극한환경에서 운행되는 구조물의 초기 손상 탐지 및 손상 위치 탐지가 높은 정확도로 가능함을 확인하였다.

Structural health monitoring of seismically vulnerable RC frames under lateral cyclic loading

  • Chalioris, Constantin E.;Voutetaki, Maristella E.;Liolios, Angelos A.
    • Earthquakes and Structures
    • /
    • 제19권1호
    • /
    • pp.29-44
    • /
    • 2020
  • The effectiveness and the sensitivity of a Wireless impedance/Admittance Monitoring System (WiAMS) for the prompt damage diagnosis of two single-storey single-span Reinforced Concrete (RC) frames under cyclic loading is experimentally investigated. The geometrical and the reinforcement characteristics of the RC structural members of the frames represent typical old RC frame structure without consideration of seismic design criteria. The columns of the frames are vulnerable to shear failure under lateral load due to their low height-to-depth ratio and insufficient transverse reinforcement. The proposed Structural Health Monitoring (SHM) system comprises of specially manufactured autonomous portable devices that acquire the in-situ voltage frequency responses of a network of twenty piezoelectric transducers mounted to the RC frames. Measurements of external and internal small-sized piezoelectric patches are utilized for damage localization and assessment at various and increased damage levels as the magnitude of the imposed lateral cycle deformations increases. A bare RC frame and a strengthened one using a pair of steel crossed tension-ties (X-bracing) have been tested in order to check the sensitivity of the developed WiAMS in different structural conditions since crack propagation, damage locations and failure mode of the examined frames vary. Indeed, the imposed loading caused brittle shear failure to the column of the bare frame and the formation of plastic hinges at the beam ends of the X-braced frame. Test results highlighted the ability of the proposed SHM to identify incipient damages due to concrete cracking and steel yielding since promising early indication of the forthcoming critical failures before any visible sign has been obtained.

강섬유 보강 초고성능 콘크리트(UHPFRC) I형 보의 전단 강도 (Shear Strength of Ultra-High Performance Fiber-Reinforced Concrete(UHPFRC) I-shaped Beams without Stirrup)

  • 이지형;홍성걸
    • 콘크리트학회논문집
    • /
    • 제29권1호
    • /
    • pp.53-64
    • /
    • 2017
  • 강섬유 보강 초고성능 콘크리트(UHPFRC)는 높은 압축강도 뿐 아니라 강섬유 보강에 의한 뛰어난 응력분산효과로 인해 높은 인장강도를 가지며, 미세균열의 확장을 통해 균열 후에도 경화거동을 하여 구조부재가 안정적으로 외력에 저항하도록 한다. 본 연구에서는 UHPFRC 재료 인장강도를 정의함에 있어 노치가 있는 휨실험과 직접인장실험을 비교하여 실험법 및 결과 분석의 장단점을 알아보았다. I-형 보의 전단부재실험은 복부의 면내전단거동을 알아보기 위하여 전단 경간비, 유효높이, 재료인장강도를 변수로 계획하였다. 실험결과를 통해 전단보강근이 없는 UHPFRC I형 보의 균열발생 이후 전단거동의 응력 재분배효과를 정량적으로 판단하고, 균열 후 거동을 기존 전단 강도식이 잘 반영하고 있는지 검토하였다. 전단철근 보강이 없는 UHPFRC 전단부재의 경우 파괴모드는 사인장 파괴로 동일하였고, 이러한 파괴모드를 가지는 부재는 전단 경간비와 유효높이에 크게 영향을 받게 되어 부재 설계 시 이러한 변수에 대한 고려가 필요한 것으로 나타났다.