• 제목/요약/키워드: Crack Growth Life

검색결과 345건 처리시간 0.026초

고온하 304 스테인레스강의 작은 표면구열의 성장거동에 관한 연구 (A Study on Growth Behavior of Small Fatigue Crack in 304 Stainless Steel at Elevated Temperatures)

  • 서창민;김영호
    • 대한기계학회논문집
    • /
    • 제14권1호
    • /
    • pp.87-95
    • /
    • 1990
  • 본 연구에서는 고온기기의 구조용 부재로 널리 사용되고 있는 304스테인리스 강을 선택하여 상온, $538^{\circ}C$($1000^{\circ}$ F) 및 $593^{\circ}C$($1100^{\circ}C$ F) 고온하의 작은 표면노치 시험편 에서 발생한 표면 피로 균열의 성장거동을 레플리카법에 의하여 상세히 관찰측정하여 파괴역학적으로 해석 연구하고자 한다. 즉 피로균열의 성장특성을 ....$\DELTA\sigma^{n}$a의 매 개변수를 도입하여 정량적으로 평가하고, 수명예측을 실시하여 그 유용성을 비교검토 하였다. 또한 피로균열의 성장에 관한 실험결과 자료들을 PC를 이용하여 전산하고 도식화함으로써 파괴역학적 설계에 유용한 기초적 자료를 제시하고자 하였다.

선박용 스프링강의 피로수명에 미치는 쇼트피닝의 영향 (A Effect of Shot Peening for Fatigue Life of Spring Steel for Vessel Application)

  • 유형주;박경동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권4호
    • /
    • pp.426-435
    • /
    • 2005
  • The lightness of components required in automobile and machinery industries is requiring high strength of components. Therefore this requirement is accomplished as the process of shot-peening method that the compressive residual stress is made on the metal surface as one of various improvement methods. Special research is, therefore, needed about compressive residual stress on the metal surface in the process of shot-peening method. Therefore, in this paper the effect of compressive residual stress of spring steel(JISG SUP-9) by shot-peening on fatigue crack growth characteristics in environmental condition(temperature) and mechanical condition(shot velocity, stress ratio) was investigated with considering fracture mechanics. By using the methods mentioned above, the following conclusions have been drawn. (1) The fatigue crack growth rate(da/dN) of the shot-peened material was lower than that of the un-peened one. In high temperature range. fatigue crack growth rate decreased with increasing temperature range, while fatigue crack growth rate increased by decreasing temperature in low temperature. (2) Fatigue life shows more improvement in the shot-peened material than in the un-peened material. And compressive residual stress of surface on the shot-peen processed operate resistance force of fatigue crack propagation.

복합재 패치로 한쪽 면을 보강한 평판의 균열선단 진전거동 해석 (Analysis of fatigue crack growth behavior in composite-repaired aluminum plate)

  • 이우용;이정주
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.241-245
    • /
    • 2004
  • An analytical study was conducted to characterize the fatigue crack growth behavior of pre-cracked aluminum plates repaired with asymmetric bonded composite patch. For single-sided repairs, due to the asymmetry and the presence of out-of-plane bending, crack front shape would become skewed curvilinear started from a uniform through-crack profile, as observed from previous studies. In this study, the fatigue analysis of single-sided repairs considering crack front shape development was conducted by implementing three-dimensional successive finite element method coupled with linear elastic fracture mechanics (LEFM) concept, which enables the growing crack front to be directly traced and modeled in a step by step way. Through conducting present analysis technique, crack path of the patched plate as well as the fatigue life was evaluated with sufficient accuracy. The analytical predictions of both the crack front shape evolution and the fatigue life were in good agreement with the experimental observations.

  • PDF

차량용 스프링강의 피로균열진전에 미치는 압축잔류응력의 영향 (The Effect of Compressive Residual Stress on The Fatigue life in Spring Steel for vehicles)

  • 박경동;하경준;박형동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권1호
    • /
    • pp.82-90
    • /
    • 2003
  • Nowadays, many components used in machinery industry is required lightness and high strength. The shot-peening method is used in order to improve the fatigue life of spring steel(JIS G SUP-9) which is used in suspension of automobile. The compressive residual is induced in this shot-peening process. This paper investigated the effect of the residual compressive stress on the fatigue crack growth characteristics. Main results are summarized as follows. 1. The fatigue crack growth rate on stage II is conspicuous with the level of compressive residual stress and is dependent on Paris equation. 2. Although the maximum compressive residual stress is deeply and widely formed from surface, it does not improve the fatigue life comparing when maximum compressive residual stress is formed in surface. 3. The threshold stress intensity factor range is increased with increasing compressive residual stress. 4. In fracture surface of fatigue crack growth it is investigated that compressive residual stress remarkably retards fatigue crack growth.

7075-T6Al 합금에 있어서 변동하중진폭 하에서의 피로균열성장거동 (Fatigue Crack Growth Behavior of 7075-T6Al Alloy under Simple Stepped Variable Amplitude Loading Conditions)

  • 신용승
    • 한국생산제조학회지
    • /
    • 제6권4호
    • /
    • pp.80-88
    • /
    • 1997
  • An experimental investigation of the fatigue through crack growth behavior under simple stepped variable loading condition has been performed using Al7075-T651. Experiments were carried out by using cantilever bending type specimens, with chevron notches on a small electro-magnetic test machine. Tensile overloads have a retarding effect on the fatigue crack growth rates, therefore tensile overloads were used for the beneficial effect on the fatigue life. While in most cases compressive overloads have only a vanishing effect on crack growth rates, some experiments with single edge crack tension specimens reveal a marked growth retardation. The stress ratios used in this investigations varies from R=0.32 to 0.81, from R=0.04 to 0.76, from R=-0.15 to 0.73, and from R=-0.33 to 0.68 and the peak load for each case was not varied. The crack growth and crack closure were measured by Kikukawa's compliance method with a strain gauge mounted on the backside of each specimens. The results obtained are as follows. When the stepped variable load was applied, the smaller the stress ration was, the larger the delayed retardation of the crack growth rate was. The fatigue crack growh rate data obtained for through cracks were plotted well against the effective stress intensity factor range from 4.0 to 20.0MP{a^{SQRT}m}. It was found that the effective stress intensity factor range ratio was related well to the opening stress intensity factor, the maximum stress intensity factor, and crack length.

구조물의 균열 진전 탐지를 위한 광섬유 브래그 격자 센서 (Fiber Optic Bragg Grating Sensor for Crack Growth Detection of Structures)

  • 권일범;서대철;김치엽;윤동진;이승석
    • 비파괴검사학회지
    • /
    • 제27권4호
    • /
    • pp.299-304
    • /
    • 2007
  • 구조물의 주요 부재들은 임의의 부분에 과대 하중이 작용하거나 반복 하중을 받아서 재료가 열화되면 균열이 발생한다. 이러한 균열은 구조물의 안전성을 평가할 수 있는 중요한 인자이며 균열의 진전 여부가 구조물의 안전성을 평가하기 위한 중요한 지표로 사용할 수 있다. 따라서 본 연구에서는 구조물의 기존 균열이 진전하는지를 감시하기 위하여 광섬유 브래그 격자 센서를 개발하였다. 이 센서 시스템은 탐촉자, 파장제어 광원부 및 광수신부, 그리고 가진부로 구성된다. 센서 탐촉자 부분은 광섬유 브래그 격자 소자만으로 구성된다. 파장제어 광원부는 전류공급회로와 DFB(distributed feedback) 레이저 다이오드로 구성되고 파장 제어 회로는 레이저 다이오드의 온도를 바꾸어 파장을 제어한다. 또한 가진부는 강체 낙하구에 의하여 구현한다. 이렇게 구성된 센서의 성능은 알루미늄판에 임의의 균열을 만들고 센서를 작동시키면서 출력 신호를 검토하면서 확인하였다. 광섬유 브래그 격자 센서의 출력 신호의 변화는 균열 길이 변화에 따라서 크게 변화되어 나타나므로 균열 진전 탐지 가능성이 충분함을 확인할 수 있었다.

스프링강의 피로파괴에 미치는 압축잔류응력의 영향 (A Study on the effect of Compressive residual stress on fatigue crack propagation behavior of the spring steel)

  • 진영범;박경동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.348-352
    • /
    • 2004
  • Recently the steel parts used for automiles and trains are required to be used under higher stress than ever before in need of the weight down. However, threr are a lot of problems with developing such of fatigue strength and fatigue life are mainly focused on by adopting residual stress. And got the following characteristics from crack growth test carried out stress ratio. Fatigue life shows more improvement in the Un-peening material. And Compressive residual stress of surface on the Shot-peening processed operate resistance force of fatigue. So we cam obtain fallowings. (1) The fatigue crack growth rate on stage II is conspicuous with the size of compressive residual stress and is dependent of Paris equation. (2) Although the maximum compressive residual stress is deeply and widely formed from surface, fatigue life does not improve than when maximum compressive residual stress is formed in surface. (3) The threshold stress intensity factor range is increased with increasing compressive residual stress.

  • PDF

손상허용해석을 위한 균열성장모델 교정 (Calibration of crack growth model for damage tolerance analysis)

  • 주영식;김재훈
    • 한국군사과학기술학회지
    • /
    • 제5권4호
    • /
    • pp.67-77
    • /
    • 2002
  • This paper introduces the calibration results of the fatigue crack growth models for damage tolerance analysis of the aircraft structures. Generalized Willenborg model and Wheeler model are calibrated with experimental data tested under the load spectrum of a trainer. The retardation factors such as, shut-off ratio in Generalized Willenborg model and shaping exponent in Wheeler model, are evaluated for aluminum alloys AL2024-T3511, AL7050-T7451 and AL7075-T73511. It is shown that the retardation effect of the crack growth rate depends on the yield strength of material and the maximum stress in the load spectrum. Generalized Willenborg model and Wheeler model give satisfactory prediction of crack growth life but the calibration of the experimental parameters with test is required.

Variability of Fatigue Crack Initiation Life in Flux Cored Arc Welded API 2W Gr.50 Steel Joints

  • Sohn, Hye-Jeong;Kim, Seon-Jin
    • International Journal of Ocean System Engineering
    • /
    • 제2권3호
    • /
    • pp.160-169
    • /
    • 2012
  • Flux Cored Arc Welding (FCAW) is a common practice to join thick plates such as the structural members of large scale offshore structures and very large container ships. The objective of this study was to investigate the mechanical properties and variability of the fatigue crack initiation life in the flux cored arc welded API 2W Gr.50 steel joints typically applied to offshore structures with a focus on the effect of the materials in fatigue crack growth life from the notch root of a compact tension specimen. Offshore structural steel (API 2W Gr.50) plates (60-mm thick) were used to fabricate multi-path flux core arc welded butt welded joints to clearly consider fatigue fractures at the weld zone from the notch. Fatigue tests were performed under a constant amplitude cyclic loading of R = 0.4. The mean fatigue crack initiation life of the HAZ specimen was the highest among the base metal (BM), weld metal (WM), and heat affected zone (HAZ). In addition, the coefficient of variation was the highest in the WMl specimen. The variability of the short fatigue crack growth rates from the notch tips in the WM and HAZ specimens was higher than in BM.

근사모델을 사용한 손상허용해석 (Damage Tolerance Analysis Using Surrogate Model)

  • 장병욱;임재혁;박정선
    • 한국항공우주학회지
    • /
    • 제39권4호
    • /
    • pp.306-313
    • /
    • 2011
  • 항공기 부품에 대한 손상허용해석은 구조적 안전성 및 신뢰성 보장을 위해 면밀히 평가되어야한다. 손상허용기법은 항공기 주구조의 피로 설계기법으로 초기균열의 존재를 고려하여 피로수명을 산정한다. 따라서 손상허용해석에서는 피로 균열성장 수명의 계산이 요구되며, 이를 바탕으로 부품의 점검시간 및 교체주기를 결정한다. 본 논문에서는 형상이 복잡한 터빈 휠에 대하여 손상허용해석을 수행하였다. 형상이 복잡한 구조의 균열성장수명평가 시에는 주요 변수인 응력확대계수의 식을 알기 어려워, 이를 유한요소해석으로 계산하므로 많은 시간이 요구된다. 이러한 문제를 해결하고자 특정 균열길이에 대한 응력확대계수를 유한요소해석으로 계산하고, 생성된 데이터의 회귀분석을 통해 응력확대계수의 근사모델을 생성하였다. 균열성장 수명은 근사모델의 적분으로 계산하였으며, 근사모델을 사용하여 균열성장 수명평가와 손상허용해석의 효율을 높일 수 있었다.