• Title/Summary/Keyword: Crack Friction

Search Result 175, Processing Time 0.023 seconds

Homogenization of Elastic Cracks in Hoek-Brown Rock (Hoek-Brown 암석에서 발생된 탄성균열의 균질화)

  • Lee, Youn-Kyou;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.158-166
    • /
    • 2009
  • As a basic study for investigating the development of the stress-induced crack in Hoek-Brown rock, a homogenization technique of elastic cracks is proposed. The onset of crack is monitored by Hoek-Brown empirical criterion, while the orientation of the crack is determined by the critical plane approach. The concept of volume averaging in stress and strain component was invoked to homogenize the representative rock volume which consists of intact rock and cracks. The formulation results in the constitutive relations for the homogenized equivalent anisotropic material. The homogenization model was implemented in the standard FEM code COSMOSM. The numerical uniaxial tests were performed under plane strain condition to check the validity of the propose numerical model. The effect of friction between the loading plate and the rock sample on the mode of deformation and fracturing was examined by assuming two different contact conditions. The numerical simulation revealed that the homogenized model is able to capture the salient features of deformation and fracturing which are observed commonly in the uniaxial compression test.

The Numerical Analysis of Extrusion Forming on the Manufactured Artificial Lightweight Aggregate Made of Incinerated Sewage Sludge Ash by a Finite Element Method (유한요소법을 이용한 하수슬러지 소각재의 인공경량골재 제조시 압출성형해석)

  • Jung, Byung-Gil;Bae, Jin-Woo;Sung, Nak-Chang
    • Journal of Environmental Science International
    • /
    • v.16 no.10
    • /
    • pp.1169-1177
    • /
    • 2007
  • The main objective of this research was to evaluate the effects of process variables which were forming ability, flow displacement, effective stress, effective strain, fluid vector and products defects on manufactured artificial lightweight aggregate made of both incinerated sewage sludge ash and clay by means of the numerical analysis of a rigid-plastic finite element method. CATIA (3D CAD program) was used for an extrusion metal mold design that was widely used in designing aircraft, automobile and metallic molds. A metal forming analysis program (ATES Co.) had a function of a rigid-plastic finite element method was used to analyze the program. The result of extrusion forming analysis indicated clearly that a shape retention of the manufactured artificial light-weight aggregate could be maintained by increasing the extrusion ratio (increasing compressive strength inside of extrusion die) and decreasing the die angle. The stress concentration of metal mold was increased by increasing an extrusion ratio, and it was higher in a junction of punch and materials, friction parts between a bottom of the punch and inside of a container, a place of die angle and a place of die of metal mold. Therefore, a heat treatment as well as a rounding treatment for stress distribution in the higher stress concentration regions were necessary to extend a lifetime of the metallic mold. A deformity of the products could have made from several factors which were a surface crack, a lack of the shape retention and a crack of inside of the products. Specially, the surface crack in the products was the most notably affected by the extrusion ratio.

Evaluation of structural safety reduction due to water penetration into a major structural crack in a large concrete project

  • Zhang, Xiangyang;Bayat, Vahid;Koopialipoor, Mohammadreza;Armaghani, Danial Jahed;Yong, Weixun;Zhou, Jian
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.319-329
    • /
    • 2020
  • Structural damage to an arch dam is often of major concern and must be evaluated for probable rehabilitation to ensure safe, regular, normal operation. This evaluation is crucial to prevent any catastrophic or failure consequences for the life time of the dam. If specific major damage such as a large crack occurs to the dam body, the assessments will be necessary to determine the current level of safety and predict the resistance of the structure to various future loading such as earthquakes, etc. This study investigates the behavior of an arch dam cracked due to water pressure. Safety factors (SFs), of shear and compressive tractions were calculated at the surfaces of the contraction joints and the cracks. The results indicated that for cracking with an extension depth of half the thickness of the dam body, for both cases of penetration and non-penetration of water load into the cracks, SFs only slightly reduces. However, in case of increasing the depth of crack extension into the entire thickness of the dam body, the friction angle of the cracked surface is crucial; however, if it reduces, the normal loading SFs of stresses and joints tractions reduce significantly.

Improvement of fatigue resistance of the miniature gear by controlling holding time of temperature in the hot powder extrusion process (분말 압출 공정에서 온도 유지시간 제어를 통한 미세기어의 내피로성 향상 연구)

  • Kim, J.W.;Lee, K.H.;Hwang, D.W.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.449-452
    • /
    • 2009
  • This paper was designed to fabricate the miniature spur gear with pitch circle of 1.8 by hot extrusion process of mechanically alloyed Zn-22wt%Al powder at various temperature. The mechanical alloying was preformed for ball milled times of 8h, 16h and 32h by the planetary ball milling. Mechanically alloyed powders were compacted cylindrical performs. Extrusions of the miniature spur gear using the alloyed powder were carried out at different extrusion temperatures. The extruded spur gear was sintered for 2h at $350^{\circ}C$ in argon atmosphere. The friction between the die and the powdered billet and the internally different density due to complex product shape cause the internal crack. To overcome the mentioned problems, high dimensional accuracy at cross section of the spur gear and uniform Vickers hardness could be obtained by graphite lubricant and controlling holding time.

  • PDF

Transient Heat Transfer Analysis of Brake Drum Shape (브레이크 드럼의 형상에 따른 과도 열전달 해석)

  • Kim, Yang-Sul;An, Su-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.8
    • /
    • pp.65-71
    • /
    • 2008
  • This paper presents a transient heat transfer analysis of a drum brake shape. The transient heat transfer analysis of automotive drum brakes with frictional contact is performed by using the finite element method. The drum brake type studied in the page is the internally expanding one in which two shoes fitted externally with frictional material are forced outward against surface a rotating drum on the wheel unit. In this case, the braking power is produced by the friction force between a drum and a lining, and is converted into heat. The brake drum has constant material properties. The air inside the drum has temperature-dependent thermal conductivity and enthalpy. Radiation effects are ignored. The result explains the reason why hair crack and cause of drum failure occur. The temperature of drum is in proportion to the drum thickness and nonlinear changes at every points of drum. It's necessary for the decrease of the drum temperature to make the air inside drum flow.

A Study on Life Cycle Extension of T-50 Aircraft Hydraulic Control Valve (T-50 항공기 유압조절 밸브 수명연장 방안)

  • Nam, Yongseo;Kim, Taehwa;Baek, Seungji;Kim, Seunghyu;Song, Seokbon
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.2
    • /
    • pp.16-20
    • /
    • 2010
  • In General, the hydraulic system of T-50 Advanced Trainer is applied to flight control system, wheel & Brake system and fuel system for aircraft operation. The hydraulic system is operation with pressure of 3000psi. and many mechanical parts which is operated by hydraulic system has been stressed in incomplete environment same as heat and friction. for example, Oil leakage had occurred in the shutoff valve of FFP used in a certain period of time. After study, The crack progressed by fatigue due to the irregular hydraulic pressure and vibration has been identified as the reason of oil leakage. This paper presents life cycle extension plans of FFP shutoff valve by configuration improvements of shutoff valve and FFP hydraulic motor.

  • PDF

Shear Transfer in Normal and High Strength Concrete (보통강도 및 고강도 콘크리트의 전단전달)

  • Oh Byung Hwan;Kim Kwang Soo;Lee Jong Hoon;Han Seung Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.585-590
    • /
    • 2001
  • Cracks in concrete can submit shear forces by virtue of the roughness of their interfaces. With regard to this roughness, the crack faces play an important role. By transmitting normal and shear stress across their faces, shear cracks contribute to shear resistance. This process is called shear transfer or more generally, shear friction. Both experimental and analytical program to investigate shear transfer mechanism in normal and high strength concrete were included in this study. The parameters investigated in push-off test included the concrete strength, the presence and amounts of steel stirrups, and aggregate size. Solution procedure based on the truss model was developed to analyze the shear transfer behavior. In general, it can be seen that the analytical results agree well with results of shear transfer test.

  • PDF

Bond Strength Evaluation of Epoxy-Coated Reinforcement using Nonlinear Finite Element Analysis (비선형 유한요소법에 의한 에폭시 피막된 철근의 부착에 관한 연구)

  • 최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.65-68
    • /
    • 1991
  • Finite element analysis is used to study the role of interfacial properties on the bond strength of reinforcing steel to concrete. Specifically, the role played by epoxy coatings on the failure of standard beam-end specimens is explored. Experimental results show that epoxy coatings reduce bond strength, but that the effect is dependent on the bar size and the deformation pattern. The finite element model for the beam-end specimen includes representations for the deformed steel bar, the concrete, and the interfacial material. The interface elements can be varied to match the stiffness and friction properties of the interfacial material. Cracking within the concrete is represented using Hillerborg's ficticious crack model. The model is used to study important aspects or behavior observed in the tests and to provide an explanation for the effect of the various test parameters.

  • PDF

Thermo-Mechanica1 Stress Analyses of Part with Coated Layer under Contact Load Using Partial Model (부분 모델을 이용한 접촉하중을 받는 코팅층이 있는 부재의 열적/기계적 응력해석)

  • 권영두;김석삼;신세현;추상우
    • Tribology and Lubricants
    • /
    • v.18 no.3
    • /
    • pp.228-234
    • /
    • 2002
  • Generally, space structures are subjected to severe situations, such as, sublimation, strong evaporation of lubricants, thermal stresses, high temperature gradients, irradiation, impacts by microscopic meteorites, and other factors. Recent]y, various kinds of coatings are applied to the parts under heavy contact stresses, in order to insure long wear-free lives and/or reduce friction coefficients. In space structures, molybdenum disulfide is using frequently. Moreover TiN, Al$_2$O$_3$, PTFE(Poly Tetra Fluor Ethylene) are introduced recently for space structure. In this part we are going to apply the partial model method, developed in reference[11] to analyze part with coated layer. In referencer[l1], we compute the reasonable size of partial model and aspect ratio. Using these data, we analyze the structures coated with TiN, Al$_2$O$_3$, PTFE under contact load, temperature and crack model . Beside, we consider the stress analysis under time dependent load and transient thermal effect.

Experimental Investigation of Thermal Stress Cracks in Mechanical Face Seals (기계평면시일의 열응력 크랙에 관한 실험적 연구)

  • 김청균
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.79-84
    • /
    • 1996
  • One of the greatest dangers in mechanical face seals is the formation of heat checking and thermal stress cracks on the sliding surfaces. These thermal distortions due to non-uniform heating lead to increase the leakage of the sealed fluids and wear, and with balance of the seal can cause the seal faces to part. In this study heat checking and thermal stress cracks are investigated experimentally. These thermal distortions are explained using the thermal models of the conatct geometries between the seal ring and the seal seat. To overcome these thermal problems, the thermohydrodynamic seal is presented. The newly developed mechanical seal may substantially reduce the friction torque, frictional heating which causes heat checking and thermal stress cracks, and wear.