• Title/Summary/Keyword: Crack Depth

Search Result 601, Processing Time 0.026 seconds

Flexural Behavior of Dual Prestress Concrete Beams Using High Performance Steel Fiber Reinforced Concrete Subjected to Cyclic Loading (고성능 강섬유보강 콘크리트가 적용된 반복하중을 받는 이중 프리스트레스 콘크리트 보의 휨 거동)

  • Park, Tae-Hyo;Yun, Sung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.61-64
    • /
    • 2004
  • This study presents results from an experimental work for two normal prestressed concrete beams and three dual prestressed concrete beams. The dual prestressed concrete beams made with normal concrete in compression zone and high performance steel fiber reinforced concrete in partial depth of tension zone. Through cyclic loading test under low frequency, structural behavior and resistance to dynamic loading for dual prestressed concrete beams are investigated. Considerable increase of crack and yield load capacity of Dual prestressed concrete beam is shown compared with normal prestressed concrete beam. In addition, re-loading and un-loading rigidity of dual prestressed concrete beam under cyclic loading are increased comparing with normal prestressed concrete beam.

  • PDF

Non-destructive Inspection Methods for Componential Analysis of Concrete (콘코리트 성분분석을 위한 비파괴분석방법)

  • Kanada, Hisashi;Ahn, Tae-Ho;Uomoto, Taketo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.933-936
    • /
    • 2006
  • Many non-destructive inspection methods have recently been developed for concrete structures. However, these methods can obtain only physical information of concrete, such as crack depth, delamination or position of reinforcement etc. near its surface. If chemical information is required, sampling and componential analyses may be earned out. Non-destructive method that can detect deterioration factors such as carbonation, chloride content or sulfate attack would be an outstanding innovation in inspection methodologies. In this research, near-infrared spectroscopy and X-ray fluorescence analysis were applied for componential analysis for concrete. These methods are very effective compared to traditional methods, therefore, working efficiency and maintenance cost will be improved.

  • PDF

Estimation of Fatigue Damage Due to Rolling Contact in a Railway Wheel Using FEM Analysis (유한요소법을 이용한 철도 차륜에서 구름 접촉으로 인한 피로손상 평가)

  • Lee, Sang-Hoon;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • Fatigue damage on the train wheel surface was estimated by considering the effect of friction coefficient of rolling on the contact surface between the wheel and rail during operation. From FEM analys, the maximum Tresca stress was 550.7 MPa at a depth of 2.07 mm under the maximum contact pressure ($P_{max}$ = 894.3 MPa) between wheel and rail. The maximum stress continued to increase along with the increase in the frictional coefficient. The fatigue initiation lifetime of the wheel by the rolling contact was predicted using the Smith-Watson-Topper (SWT) equation and the maximum principal strain equation (${\varepsilon}$-N).

The Contact Fatigue Life Analysis of Rough Surfaces (거친 표면의 접촉피로 수명예측)

  • Chu Hyo-Jun;Lee San-Don;Cho Yong-Joo
    • Tribology and Lubricants
    • /
    • v.21 no.3
    • /
    • pp.136-141
    • /
    • 2005
  • Analytical model to calculate the contact fatigue life of rough surface is presented in this paper. The effect of surface roughness can be calculated by this model. Computational method and the theoretical basis are also discussed. Contact stresses are obtained by contact analysis of a semi-infinite solid based on the use of influence functions; the subsurface stress field is obtained using rectangular patch solutions. Mesoscopic multiaxial fatigue criterion which can yield satisfactory results for non-proportional loading is then applied to predict fatigue damage. Suitable counting method and damage rule were used to calculate the fatigue life of random loading caused by rough surface. As a result of analysis the relationship between the life and the roughness as well as the most probable depth of the crack initiation is calculated.

Deformation Characteristics in Sheet Metal Forming with Small Ball (소형 구를 이용한 박판 성형에서의 변형특성)

  • 심명섭;박종진
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.59-66
    • /
    • 2001
  • Recently, the technology of incremental forming for sheet metal components has drawn attention for small-batch productions. In the present investigation, a forming tool containing a freely-rotating ball was developed and applied to forming of various shapes with full annealed Al 1050 sheet. Deformation characteristics occurring during forming with this tool was examined through FEM analysis and grid measurement. It was found that deformation modes developed along a straight path and around a corner are close to those of plane-strain and equi-biaxial stretching, respectively, and that cracks occur mostly at corners for the same depth of tool. FEM analysis was successfully applied to this special type of forming process and provided comparable results to the measurements from experiment.

  • PDF

Characteristic of Rolling Contact Fatigue in Silicon Nitride Ceramics (질화규소세라믹스의 접촉피로 특성)

  • Yu, Seong-Geun
    • Korean Journal of Materials Research
    • /
    • v.7 no.3
    • /
    • pp.224-228
    • /
    • 1997
  • Rolling contact fatigue tests were performed for two types silicon nitrides using disk- type specimens. Materials showed a fatigue behaviour similar to that typically found in metallic materials From the fractographic and metallographic observations, it has been found that the crack initation in the silicon nitrides subjected to rolling contact fatigue is to be induced by cyclic subsurface shear stress, as is known in steel bearing. On the mid-sections of the specimens, many subsurface cracks which lay parallel to the contact surface can be found at a depth where fluctuation of the Herzian shear stress was the maximum.

  • PDF

Acoustic Emission Testing of Cylindrical Reactor Pressure Vessel during Hydrotests (수압시험중(水壓試驗中)의 원주형(圓柱型) 압력용기(壓力容器)에 대(對)한 AE검사(檢査))

  • Chang, Hong-Keun;Lee, Joo-Suk;Chung, Sung-Mok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.4 no.1
    • /
    • pp.5-10
    • /
    • 1984
  • One of the cylindrical reactor vessels in petrochemical plants was examined by acoustic emission method. The vessel was quiet in view of A.E. activity throughout the pressure range $12-44kg.f/cm^{2}.G$. Above the pressure of $44kg.f/cm^2$, some events were appeared lower than 30 counts. In order to verify the events, other Nondestructive testing methods were performed and a surface crack, 10mm in length and 0.8mm in depth, was found on the outside surface of circumferential weld.

  • PDF

Burst pressure estimation of Alloy 690 axial cracked steam generator U-bend tubes using finite element damage analysis

  • Kim, Ji-Seok;Kim, Yun-Jae;Lee, Myeong-Woo;Jeon, Jun-Young;Kim, Jong-Sung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.666-676
    • /
    • 2021
  • This paper presents numerical estimation of burst pressures of axial cracked U-bend tubes, considering the U-bending process analysis. The validity of the FE simulations is confirmed by comparing with published experimental data. From parametric analyses, it is shown that existing EPRI burst pressure estimation equations for straight tubes can be conservatively used to estimate burst pressures of the U-bend tubes. This is due to the increase in yield strength during the U-bending process. The degree of conservatism would decrease with increasing the bend radius and with increasing the crack depth.

Energy and strength in brittle materials

  • Speranzini, Emanuela
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.373-385
    • /
    • 2019
  • A study concerning the strength of brittle materials is presented in this paper. The failure behavior was investigated examining the plane of the crack after the failure and comparing the results obtained with those deriving from the fracture mechanics theory. Although the proposed methods are valid in general for brittle materials, the experiment was performed on glass because the results are more significant for this. Glass elements of various sizes and different edge finishes were subjected to bending tests until collapsing. The bending results were studied in terms of failure load and energy dissipation, and the fracture surfaces were examined by means of microscopic analysis, in which the depth of the flaw and the mirror radius of the fracture were measured and the strength was calculated. These results agreed with those obtained from the fracture mechanics analysis.

A Study on the Microcutting for Configuration of Tools using Molecular Dynamics (분자동역학을 이용한 공구형상에 따른 미소절삭현상에 관한 연구)

  • Moon, Chan-Hong;Kim, Jeong-Du
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.4
    • /
    • pp.135-142
    • /
    • 1995
  • Recently, the analysis of microcutting with submicrometer depth of cut is tried to get a more high quality surface product, but to get a valuable result another method instead of conventional finite element method must be considered because finite element method is impossible for a very small focused region and mesh size. As the alternative method, Molecular Dynamics or Statics is suggested and accepted in the field of microcutting, indentation and crack propagation. In this paper using Molecular Dynamics simulation, the phenomena of microcutting with subnanometer chip thickness is studied and the cutting mechanism for tool edge configuration is evaluated. As the result of simulation the atomistic chip formation is achieved.

  • PDF