• 제목/요약/키워드: Crack Depth

검색결과 601건 처리시간 0.033초

전동차 차륜의 반복 구름 접촉에 의한 피로균열 전파에 관한 연구 (A Study on Fatigue Crack Growth of an EMU Wheel due to Repeated Rolling Contacts)

  • 김호경;이덕규
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.595-600
    • /
    • 2004
  • The EMU wheel is one of the most important component for the vehicle safety. For the tensile, fracture toughness and crack propagation tests, several specimens were collected from actual wheels. FEM ,analysis also was performed on the crack that was assumed to be 15 mm in depth under the wheel tread surface. The stress intensity factors $K_{I}$ and $K_{II}$ at the crack tip under the stress ($P_{max}$ = 911.5 MPa) due to a rolling contact were analyzed for crack growth characteristics. As a result, the perpendicular crack was found to be more dangerous compared to the parallel one.

  • PDF

원전 주배관의 응력부식 가상결함 성장에 대한 잔류응력 영향 평가 (Stress Corrosion Crack Growth Evaluation in Primary Loop of Nuclear Power Plant)

  • 양준석;박치용;윤기석;강선예;오종근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.274-277
    • /
    • 2004
  • The most important mode of subcritical crack growth is primary water stress corrosion crack, which was the reported mechanism from the root cause analysis of the crack in the bimetallic welds. Stress corrosion crack growth evaluations was carried out for several flaw shapes of both axial and circumferential flaws, using the steady-state stresses including residual stresses. This evaluation considered the possibility of additional flaws in the primary loops of nuclear power plant, even though no such flaws have been identified by Ultrasonic Test. Consequently, Results show that the predicted flaw sizes will determine acceptability for continued service and maintenance.

  • PDF

크랙과 부가질량들을 가진 유체유동 파이프의 안정성 해석 (Stability Analysis of Pipe Conveying Fluid with Crack and Attached Masses)

  • 손인수;윤한익
    • 한국정밀공학회지
    • /
    • 제25권5호
    • /
    • pp.121-131
    • /
    • 2008
  • In this paper, the dynamic stability of a cracked simply supported pipe conveying fluid with an attached mass is investigated. Also, the effect of attached masses on the dynamic stability of a simply supported pipe conveying fluid is presented for the different positions and depth of the crack. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by the energy expressions using extended Hamilton's principle. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of a fracture and to be always opened during the vibrations. Finally, the critical flow velocities and stability maps of the pipe conveying fluid are obtained by changing the attached masses and crack severity. As attached masses are increased, the region of re-stabilization of the system is decreased but the region of divergence is increased.

Crack identification with parametric optimization of entropy & wavelet transformation

  • Wimarshana, Buddhi;Wu, Nan;Wu, Christine
    • Structural Monitoring and Maintenance
    • /
    • 제4권1호
    • /
    • pp.33-52
    • /
    • 2017
  • A cantilever beam with a breathing crack is studied to improve the breathing crack identification sensitivity by the parametric optimization of sample entropy and wavelet transformation. Crack breathing is a special bi-linear phenomenon experienced by fatigue cracks which are under dynamic loadings. Entropy is a measure, which can quantify the complexity or irregularity in system dynamics, and hence employed to quantify the bi-linearity/irregularity of the vibration response, which is induced by the breathing phenomenon of a fatigue crack. To improve the sensitivity of entropy measurement for crack identification, wavelet transformation is merged with entropy. The crack identification is studied under different sinusoidal excitation frequencies of the cantilever beam. It is found that, for the excitation frequencies close to the first modal frequency of the beam structure, the method is capable of detecting only 22% of the crack depth percentage ratio with respect to the thickness of the beam. Using parametric optimization of sample entropy and wavelet transformation, this crack identification sensitivity is improved up to 8%. The experimental studies are carried out, and experimental results successfully validate the numerical parametric optimization process.

반타원 표면균열 형상측정을 위한 유한요소 전기장 해석에 기초한 직류전위차법의 개발 (Development of the DCPD Method Based on Finite Element Analysis for Measuring Semi-Elliptical Surface Cracks)

  • 김영진;심도준;최재붕
    • 대한기계학회논문집A
    • /
    • 제25권7호
    • /
    • pp.1147-1154
    • /
    • 2001
  • One of major problems in analyzing failure mechanism of real components is the accurate measurement of crack size and shape. The DCPD(Direct Current Potential Drop) method has been widely used for the crack measurement of a structure and finite element analysis has been used for the derivation of calibration equations, which relates the potential drop with the crack depth. In this paper, finite element analyses were performed for semi-elliptical surface cracks with various crack shapes(a/c) and crack depths(a/t). As a result, a calibration equation has been derived for the measurement of a semi-elliptical surface crack in wide plates. Analytical results are compared with experimental results to evaluate the validity and the applicability of the derived equation. The proposed method is expected to provide efficient and accurate measurement of a surface crack during crack growth.

유한요소해석에 기반한 콘크리트 균열 조건에 따른 수분흡수 현상 분석 (FEA Simulations on Water Absorption in Various Pre-Cracked Concretes)

  • 김건수;박기태;김재환
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권5호
    • /
    • pp.68-75
    • /
    • 2021
  • 본 연구에서는 콘크리트의 균열조건에 따른 수분 흡수 현상을 해석적으로 분석하였다. 흡수 시간의 증가에 따라 콘크리트 표면을 통해 흡수되는 수분의 양을 실험적으로 분석한 기존 연구 결과들을 바탕으로 2차원 유한요소해석 모델을 개발하였다. 고려된 균열조건은 균열 폭(0.1 mm, 0.3 mm), 균열 깊이(0 ~ 250 mm), 균열 간격(0 ~ 200 mm)이며 총 30개 모델에 대한 유한요소해석을 수행하였다. 유한요소해석을 수행한 결과, 콘크리트 균열부의 수분 흡수량 증가에 중요한 영향을 미치는 조건은 균열 폭 및 균열 깊이의 변화로 확인되었다. 또한 비균열 조건의 콘크리트에 비해 균열부에서 추가로 흡수되는 물의 양을 정량적으로 분석하기 위하여, 균열부 수분 흡수계수(Scrack) 개념을 도입하고 이를 추정하기 위한 예측 식을 제안하였다. 균열 깊이에 대한 분석 결과, 콘크리트 균열 폭과 관계없이 균열 깊이 150 mm 이하에서는 균열로 인한 수분 흡수가 활발하게 발생할 수 있음을 확인하였다. 따라서 외부에 노출된 철근콘크리트 구조물은 제설제와 같은 수용액 등의 흡수로 인하여 철근 부식이 발생할 수 있음을 고려하면, 실제 시설물의 균열 조건을 파악하기 위해서는 시설물의 점검 및 진단 시에 기존 균열 폭에 대한 조사뿐만 아니라 균열 깊이에 대한 조사도 함께 수행되어야 할 것으로 판단된다.

Residual static strength of cracked concrete-filled circular steel tubular (CFCST) T-joint

  • Cui, M.J.;Shao, Y.B.
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.1045-1062
    • /
    • 2015
  • Concrete-filled circular t steel tubular joints (CFSTJs) in practice are frequently subjected to fluctuated loadings caused by wind, earthquake and so on. As fatigue crack is sensitive to such cyclic loadings, assessment on performance of CFSTJs with crack-like defect attracts more concerns because both high stress concentration at the brace/chord intersection and welding residual stresses along weld toe cause the materials in the region around the intersection to be more brittle. Once crack initiates and propagates along the weld toe, tri-axial stresses in high gradient around the crack front exist, which may bring brittle fracture failure. Additionally, the stiffness and the load carrying capacity of the CFSTJs with crack may decrease due to the weakened connection at the intersection. To study the behaviour of CFSTJs with initial crack, experimental tests have been carried out on three full-scale CFCST T-joints with same configuration. The three specimens include one uncracked joint and two corresponding cracked joints. Load-displacement and load-deformation curves, failure mode and crack propagation are obtained from the experiment measurement. According to the experimental results, it can be found that he load carrying capacity of the cracked joints is decreased by more than 10% compared with the uncracked joint. The effect of crack depth on the load carrying capacity of CFCST T-joints seems to be slight. The failure mode of the cracked CFCST T-joints represents as plastic yielding rather than brittle fracture through experimental observation.

Effects of edge crack on the vibration characteristics of delaminated beams

  • Liu, Yang;Shu, Dong W.
    • Structural Engineering and Mechanics
    • /
    • 제53권4호
    • /
    • pp.767-780
    • /
    • 2015
  • Delaminations and cracks are common failures in structures. They may significantly reduce the stiffness of the structure and affect their vibration characteristics. In the present study, an analytical solution is developed to study the effect of an edge crack on the vibration characteristics of delaminated beams. The rotational spring model, the 'free mode' and 'constrained mode' assumptions in delamination vibration are adopted. This is the first study on how an edge crack affects the vibration characteristic of delaminated beams and new nondimensional parameters are developed accordingly. The crack may occur inside or outside the delaminated area and both cases are studied. Results show that the effect of delamination length and thickness-wise location on reducing the natural frequencies is aggravated by an increasing crack depth. The location of the crack also influences the effect of delamination, but such influence is different between crack occurring inside and outside the delaminated area. The difference of natural frequencies between 'free mode' and 'constrained mode' increases then decreases as the crack moves from one side of the delaminated region to the other side, peaking at the middle. The analytical results of this study can serve as the benchmark for FEM and other numerical solutions.

철도 차륜의 구름접촉 피로 균열에 관한 유한요소해석 (FEM Analysis on Rolling Contact Fatigue Crack of a Railway Wheel)

  • 김호경;양경탁;김현준
    • 한국안전학회지
    • /
    • 제22권2호
    • /
    • pp.8-14
    • /
    • 2007
  • In this study, tensile and fatigue crack propagation tests machined from actual wheels were performed. FEM analysis also was performed on the crack that was assumed to be 15 mm in depth under the wheel tread surface. The stress intensity factors K I and K II at the crack tip under the stress($P_{max}=911.5MPa$) due to a rolling contact were analyzed for crack growth characteristics. As a result, the perpendicular crack was found to be more dangerous compared to the parallel one. It is found that in the wheel fatigue crack, parallel to the wheel tread surface, the crack with its length 2a = 2.4mm starts to propagate due to the fact that the effective stress intensity factor access to the threshold stress intensity factor($K_{th}=16.04MPa{\sqrt{m}}$) of the wheel.

폴리머-강섬유를 혼입한 고강도 콘크리트보의 전단거동에 관한 실험적 연구 (An Experimental Study on Shear Behavior of Polymer-Steel Fibrous High Strength Concrete Beams)

  • 곽계환;조선정;김원태;조한용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.601-608
    • /
    • 2000
  • Steel fiber and Polymer are used widely for the reinforcement material of RC structures because of its excellence of durability, serviceability as well as mechanical properties. Polymer-Steel fibrous high strength concrete beam's input ratio are 1.0%. The shear span-to-depth ratio are 1.5, 2.8 and 3.6, compressive strength of specimens 320kg/㎠, 436kgf/㎠ and 520kgf/㎠ in 28 days. The static test was carried out to measure the ultimate load, the initial load of flexural crack and of diagonal crack, from which crack patte군 and fracture modes are earned. Also, stress-strain, load-strain and load-deflection are examined during the test cracks(shear crack, flexural crack, and diagonal tension crack), when the load values are sketched according to the growth of crack. Result are as follows; (1) The failure modes of the specimens increase in rigidity and durability in accordance with the increase of mixing steel fiber and polymer. (2) The load of initial crack was the same as the theory of shear-crack strength (3) Polymer-Steel fibrous high strength concrete beams have increased the deflection and strain at failure load, improving the brittleness of the high strength concrete. (4) In this result of study, an additional study need to make a need formular because the study is different from ACI formular and Zsutty formular.

  • PDF