• Title/Summary/Keyword: Crack Depth

Search Result 599, Processing Time 0.026 seconds

Reliability Improvement of Offshore Structural Steel F690 Using Surface Crack Nondamaging Technology

  • Lee, Weon-Gu;Gu, Kyoung-Hee;Kim, Cheol-Su;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.327-335
    • /
    • 2021
  • Microcracks can rapidly grow and develop in high-strength steels used in offshore structures. It is important to render these microcracks harmless to ensure the safety and reliability of offshore structures. Here, the dependence of the aspect ratio (As) of the maximum depth of harmless crack (ahlm) was evaluated under three different conditions considering the threshold stress intensity factor (Δkth) and residual stress of offshore structural steel F690. The threshold stress intensity factor and fatigue limit of fatigue crack propagation, dependent on crack dimensions, were evaluated using Ando's equation, which considers the plastic behavior of fatigue and the stress ratio. ahlm by peening was analyzed using the relationship between Δkth obtained by Ando's equation and Δkth obtained by the sum of applied stress and residual stress. The plate specimen had a width 2W = 12 mm and thickness t = 20 mm, and four value of As were considered: 1.0, 0.6, 0.3, and 0.1. The ahlm was larger as the compressive residual stress distribution increased. Additionally, an increase in the values of As and Δkth(l) led to a larger ahlm. With a safety factor (N) of 2.0, the long-term safety and reliability of structures constructed using F690 can be secured with needle peening. It is necessary to apply a more sensitive non-destructive inspection technique as a non-destructive inspection method for crack detection could not be used to observe fatigue cracks that reduced the fatigue limit of smooth specimens by 50% in the three types of residual stresses considered. The usefulness of non-destructive inspection and non-damaging techniques was reviewed based on the relationship between ahlm, aNDI (minimum crack depth detectable in non-destructive inspection), acr N (crack depth that reduces the fatigue limit to 1/N), and As.

Properties of Fatigue Crack Initiation and Arrest in Structural Steel Under Acid Fog (산성안개 하의 구조용강에서 피로균열의 발생 및 정류특성)

  • Kim, Min-Geon;Kim, Jin-Hak;Kim, Myeong-Seop;Ji, Jeong-Geun;Gu, Eun-Hoe
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.374-379
    • /
    • 2002
  • Corrosion fatigue tests were carried out to clarify the influence of acid fog as environmental factor on the fatigue strength of SM55C using rotary bending fatigue tester. The fatigue strength of acid fog specimen extremely decreased about 80% compared to that of distilled water specimen. In acid fog environment, a number of cracks commenced at corrosion pit and coalesced with the adjacent cracks during they propagate, and they formed a single non-propagating circumferential crack under the endurance stress of N=5$\times$10$\^$7/ cycles. Also, the depth of the crack is smaller than that of normal fatigue crack, so the crack has a veil small aspect ratio. The reason of this peculiar crack growth characteristics is that the crack opening-closure behaviors are hindered by corrosion products on the surface crack faces, and hence it is thinkable that the strong corrosion action like anodic dissolution for crack growth in depth direction is weaker compared with surface, resulting from faint pumping action of crack during loading-shedding processes.

The investigation of rock cutting simulation based on discrete element method

  • Zhu, Xiaohua;Liu, Weiji;Lv, Yanxin
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.977-995
    • /
    • 2017
  • It is well accepted that rock failure mechanism influence the cutting efficiency and determination of optimum cutting parameters. In this paper, an attempt was made to research the factors that affect the failure mechanism based on discrete element method (DEM). The influences of cutting depth, hydrostatic pressure, cutting velocity, back rake angle and joint set on failure mechanism in rock-cutting are researched by PFC2D. The results show that: the ductile failure occurs at shallow cutting depths, the brittle failure occurs as the depth of cut increases beyond a threshold value. The mean cutting forces have a linear related to the cutting depth if the cutting action is dominated by the ductile mode, however, the mean cutting forces are deviate from the linear relationship while the cutting action is dominated by the brittle mode. The failure mechanism changes from brittle mode with larger chips under atmospheric conditions, to ductile mode with crushed chips under hydrostatic conditions. As the cutting velocity increases, a grow number of micro-cracks are initiated around the cutter and the volume of the chipped fragmentation is decreasing correspondingly. The crack initiates and propagates parallel to the free surface with a smaller rake angle, but with the rake angle increases, the direction of crack initiation and propagation is changed to towards the intact rock. The existence of joint set have significant influence on crack initiation and propagation, it makes the crack prone to propagate along the joint.

Repid Corrosion Test on Reinforcing Steels in Chloride-Penetrating Concrete Structures with Various Crack Patterns (균열특성에 따른 콘크리트 구조물의 염분침투에 관한 실험적 연구)

  • 이상국;정영수;문홍식;안태송;유환구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.345-350
    • /
    • 2001
  • Reinforced concrete is, in general, known as a high durability material due to a strong alkalinity of cement. Probable concrete cracks could incur steel corrosion of RC structures and then could easily deteriorate the concrete durability, which can be fully secured by a systematic quality control for the construction of concrete structures. For the corrosion protection of reinforcing steels in concrete, however, current design specifications of concrete cover depth do not in-depth consider the effect of the cracks as well as the chloride content of RC structures. Therefore, appropriate provisions for concrete cover depth should be coded by considering the influence of concrete cracks on the corrosion of reinforcing steels. The objective of this research is to investigate pertinent cover depth, which can prohibit rebar corrosion, on the basis of experimental corrosion measurements of reinforcing steels on crack characteristics such as the width, depth and frequency of concrete cracks.

  • PDF

The Consideration of the Damage in Gas Turbine Hot Parts for Repair Bonding Process (가스터빈 고온부품의 재생 접합을 위한 손상부 파악)

  • Kim, S.W.;Choi, C.;Kim, J.C.;Lee, C.H.
    • Journal of Power System Engineering
    • /
    • v.7 no.2
    • /
    • pp.73-79
    • /
    • 2003
  • The present study was aimed at analysing the damage of a used gas turbine bucket after 39,500h of total service. Microstructures and cracks of service-induced bucket were observed. The crack might have initiated from the coating in the bucket surface by thermal fatigue and propagated into the GTD111 base metal. Maximum depth of penetration was 2.7 mm(full penetration) at the leading edge. Crack contains a lot of Cr-,Ti-,Al-oxide which will prohibit filling and wetting of insert metal. Depth and propagation direction of crack were accorded with centrifugal force and temperature distribution in turbine bucket. Present result will provide basic data for repair bonding process.

  • PDF

Vibration analysis of cracked frame structures

  • Ibrahim, Ahmed M.;Ozturk, Hasan;Sabuncu, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.33-52
    • /
    • 2013
  • In this study, the effects of crack depth and crack location on the in-plane free vibration of cracked frame structures have been investigated numerically by using the Finite Element Method. For the rectangular cross-section beam, a crack element is developed by using the principles of fracture mechanics. The effects of crack depth and location on the natural frequency of multi-bay and multi-store frame structures are presented in 3D graphs. The comparison between the present work and the results obtained from ANSYS shows a very good agreement.

Measurement of Crack Depth inside Mortar using Ultrasonic Test (초음파 검사를 이용한 모르타르 내 균열깊이 측정)

  • Kim, Dae-You;Rhim, Hong-Chul;Cho, youn-jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.81-82
    • /
    • 2016
  • Cracks are inherent to concrete by its nature. The various size and shape of cracks induce deterioration of reinforced concrete structures including nuclear power plants. The wider and deeper the crack is, the concrete structures are more vulnerable to carbonization. Thus, it is essential to develop a reliable measurement technique of cracks inside concrete. In this study, an ultrasonic test method is applied to the crack measurements. The results can be used for evaluation of existing reinforced concrete structures.

  • PDF

A Study of Small Fatigue Crack Measurement and Crack Growth Characteristics (미소균열측정과 성장특성에 관한 연구)

  • Lee, Jong-Hyung;So, Yoon-Sub;Kim, Yun-Gon;Lim, Chun-Kyoo;Lee, Sang-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.1
    • /
    • pp.39-46
    • /
    • 2007
  • The objective of this paper is to examine the detection limit, growth characteristics and notch curvature radius in short crack problem. Measurement techniques such as ultrasonic method and back-face strain compliance method were adapted. The fatigue crack growth rate of the short crack is slower than that of a long crack for a notched specimen. The short crack is detected effectively by ultrasonic method. A short surface crack occurs in the middle of specimen thickness and is transient to a through crack when maximum crack depth is larger than the notch curvature radius.

  • PDF

Shear Crack Control for High Strength Reinforced Concrete Beams Considering the Effect of Shear-Span to Depth Ratio of Member

  • Chiu, Chien-Kuo;Ueda, Takao;Chi, Kai-Ning;Chen, Shao-Qian
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.4
    • /
    • pp.407-424
    • /
    • 2016
  • This study tests ten full-size simple-supported beam specimens with the high-strength reinforcing steel bars (SD685 and SD785) using the four-point loading. The measured compressive strength of the concrete is in the range of 70-100 MPa. The main variable considered in the study is the shear-span to depth ratio. Based on the experimental data that include maximum shear crack width, residual shear crack width, angle of the main crack and shear drift ratio, a simplified equation are proposed to predict the shear deformation of the high-strength reinforced concrete (HSRC) beam member. Besides the post-earthquake damage assessment, these results can also be used to build the performance-based design for HSRC structures. And using the allowable shear stress at the peak maximum shear crack width of 0.4 and 1.0 mm to suggest the design formulas that can ensure service-ability (long-term loading) and reparability (short-term loading) for shear-critical HSRC beam members.

Analysis of Cleavage Fracture Toughness of PCVN Specimens Based on a Scaling Model (PCVN 시편 파괴인성의 균열 깊이 영향에 대한 Scaling 모델 해석)

  • Park, Sang-Yun;Lee, Ho-Jin;Lee, Bong-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.409-416
    • /
    • 2009
  • Standard procedures for a fracture toughness testing require very severe restrictions for the specimen geometry to eliminate a size effect on the measured properties. Therefore, the used standard fracture toughness data results in the integrity assessment being irrationally conservative. However, a realistic fracture in general structures, such as in nuclear power plants, may develop under the low constraint condition of a large scale yielding with a shallow surface crack. In this paper, cleavage fracture toughness tests have been made on side-grooved PCVN (precracked charpy V-notch) type specimens (10 by 10 by 55 mm) with various crack depths. The constraint effects on the crack depth ratios were evaluated quantitatively by the developed scaling method using the 3-D finite element method. After the fracture toughness correction from scaling model, the statistical size effects were also corrected according to the standard ASTM E 1921 procedure. The results were evaluated through a comparison with the $T_0$ of the standard CT specimen. The corrected $T_0$ for all of the PCVN specimens showed a good agreement to within $5.4^{\circ}C$ regardless of the crack depth, while the averaged PCVN $T_0$ was $13.4^{\circ}C$ higher than the real CT test results.