• Title/Summary/Keyword: Crack Coalescence

Search Result 77, Processing Time 0.022 seconds

Fracture Resistance Characteristics of SA516-Gr.70 Steel Plate for RCS Piping Elbow and Support Skirt (원자로 냉각재배관 엘보우 및 서포트 스컷트용)

  • Son, Jong-Dong;Lim, Man-Bae
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.49-54
    • /
    • 2006
  • The evaluation of elastic-plastic fracture characteristic was investigated in ferrite steel SA 516- Gr70 used for reactor coolant piping elbow and support skirt of pressure vessels. This paper describes the effect of temperature on J-R curve characteristic of this material. The elastic-plastic fracture mechanics parameter J is obtained with unloading compliance method. The test method were analyzed according to ASTM E 813-89 and E 1152-89. Unloading compliance $J_{IC}$ tests were performed on 1 CT specimens at varied temperatures from $25^{\circ}C$ to about $400^{\circ}C$ using a high temperature extensometer. At all temperature, valid $J_{IC}$ measurements could be made and $J_{IC}$ decreased with increasing temperature. SEM fractography schematically illustrates microvoid initiation, growth and coalescence at the tip of a preexisting crack.

Estimation of Fatigue Crack Propagation Life for Weldments by using Mk-factor (Mk-계수를 고려한 용접부 피로균열진전수명 평가)

  • Han, Seung-Ho;Han, Jung-Woo;Lim, Jeon
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.243-245
    • /
    • 2004
  • Failure mechanisms of weldments under fatigue loads are interpreted that multiple collinear surface cracks initiating along weld toe propagate under the mutual interaction and coalescence of adjacent two cracks. To estimate fatigue crack propagation life for these weldments, the stress intensity factors of the multiple surface cracks have to be calculated which are influenced strongly by the geometrical complexity of weld toes and attachments. The Ak-factors derived by a parametric study can be introduced for the effective calculation of the stress intensity factors taking into account the geometrical complexity. The fatigue life was estimated by using the Ak-factors and the method considering the propagation mechanisms of the multiple surface cracks. The estimated values showed a good agreement with the measured fatigue life experimentally.

  • PDF

Optimum Global Failure Prediction Model of Inconel 600 Thin Plate with Two Parallel Through-Wall Cracks

  • Moon Seong In;Kim Young Jin;Lee Jin Ho;Song Myung Ho;Choi Young Hwan
    • Nuclear Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.316-326
    • /
    • 2004
  • The $40\%$ of wall criterion, which is generally used for the plugging of steam generator tubes, is applied only to a single crack. In a previous study, a total number of 9 failure models were proposed to estimate the local failure of the ligament between cracks, and the optimum coalescence model of multiple collinear cracks was determined among these models. It is, however known that parallel axial cracks are more frequently detected than collinear axial cracks during an in-service inspection. The objective of this study is to determine the plastic collapse model that can be applied to steam generator tubes containing two parallel axial through-wall cracks. Three previously proposed local failure models were selected as the candidates. Subsequently, the interaction effects between two adjacent cracks were evaluated to screen them. Plastic collapse tests for the plate with two parallel through-wall cracks and finite element analyses were performed to determine the optimum plastic collapse model. By comparing the test results with the prediction results obtained from the candidate models, a COD base model was selected as an optimum model.

Structural Integrity Evaluation of Steam Generator Tube with Two Parallel Axial Through-Wall Cracks

  • Moon Seong In;Kim Young Jin;Lee Jin Ho;Song Myung Ho;Park Youn Won
    • Nuclear Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.327-337
    • /
    • 2004
  • It is commonly required that tubes with defects exceeding $40\%$ of wall thickness in depth should be plugged; however, this criterion is too conservative for some locations and for some types of defects. Many studies have been done with the aim of developing an alternative plugging criteria, and these studies have shown that steam generator tubes with a certain range of axial through-wall cracks could remain in service without any safety or reliability problems. However, these studies have been limited, thus far, to consideration of single cracked tubes, necessitating a study on multiple cracks, which are commonly found. A crack coalescence model applicable to steam generator tubes with two collinear axial through-wall cracks was proposed in the previous study. In this paper, the investigation is extended to the parallel axial cracks spaced in a circumferential direction, because parallel axial cracks are more frequently detected during in-service inspections than collinear axial cracks. Interaction effects between two parallel cracks are evaluated by performing elastic and elastic-plastic finite element analyses.

Dynamic Fracture Analysis with State-based Peridynamic Model: Crack Patterns on Stress Waves for Plane Stress Elastic Solid (상태 기반 페리다이나믹 모델에 의한 동적취성파괴 해석: 평면응력 탄성체의 응력 전파와 균열패턴 분석)

  • Ha, Youn Doh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.309-316
    • /
    • 2015
  • A state-based peridynamic model is able to describe a general constitutive model from the standard continuum theory. The response of a material at a point is dependent on the deformation of all bonds connected to the point within the nonlocal horizon region. Therefore, the state-based peridynamic model permits both the volume and shear changes of the material which is promising to reproduce the complicated dynamic brittle fracture phenomena, such as crack branching, secondary cracks, cascade cracks, crack coalescence, etc. In this paper, the two-dimensional state-based peridynamic model for a linear elastic plane stress solid is employed. The damage model incorporates the energy release rate and the peridynamic energy potential. For brittle glass materials, the impact of the crack-parallel compressive stress waves on the crack branching pattern is investigated. The peridynamic solution for this problem captures the main features, observed experimentally, of dynamic crack propagation and branching. Cascade cracks under strong tensile loading and secondary cracks are also well reproduced with the state-based peridynamic simulations.

An Experimental Study on Crack Propagation in KURT Granite using Acoustic Emission (음향방출기법을 이용한 KURT 화강암의 균열 발생 특성에 관한 실험적 연구)

  • Lee, Kyung-Soo;Kim, Jin-Seop;Choi, Jong-Won;Lee, Chang-Soo
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.295-304
    • /
    • 2011
  • The first step in improving our understanding of uncertainties suclt as rock mass strength parameters and deformation modulus in rock masses around high-level radioactive waste disposal repositories, for improved safety, is to study the process of crack development in intact rock. Therefore, in this study, the fracture process and crack development were examined in samples of KURT granite taken from the KAERI Underground Research Tunnel (KURT), based on acoustic emission (AE) and moment tensor analysis. The results show that crack initiation, coalescence, and unstable crack occurred at rock uniaxial compressive strengths of 0.45, 0.73, and 0.84, respectively. In addition, moment tensor analysis indicated that during the early stage of loading, tensile cracks were predominant. With increasing applied stress, the number of shear cracks gradually increased. When the applied stress exceeded the stress level required for crack damage, unstable shear cracks which directly result in failure of the rock were generated along the failure plane.

A Micro-observation on the Wing and Secondary Cracks Developed in Gypsum Blocks Subjected to Uniaxial Compression (일축압축상태의 석고 실험체에서 발생하는 날개크랙과 이차크랙에 대한 미시적 관측)

  • 사공명
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.171-178
    • /
    • 2003
  • Wing and secondary cracks are unique types of cracks observed in rock masses subjected to uniaxial and biaxial compressive loading conditions. In this study, morphological features of wing and secondary cracks developed in gypsum specimens are investigated in the macro and micro scales. Along the path of wing crack, microtensile cracks are observed. Microtensile cracks coalesce with pores and show branch phenomenon. From the onset of the wing crack, multiple initiations of microtensile cracks are observed. Microtensile cracks show tortuous propagation paths and relatively constant aperture of the cracks during the propagation. It is shown that microtensile cracks propagate by splitting failure. At the micro scale, microfsults are observed in the path of the secondary cracks. Along the path of the secondary cracks, separation of grains and conglomerate grains, oblique microfaults, and irregular aperture of microfault are observed. These features show that the secondary cracks are produced in shear mode. The measured sizes of fracture process zone across the propagation direction near the tip of wing and secondary cracks range from 10$\mu{m}$ to 20$\mu{m}$ far wing cracks and from 100$\mu{m}$ to 200$\mu{m}$ for secondary cracks, respectively.

An Evaluation of the Fracture Behavior for Flash Butt Welding zone by Acoustic Emission Method (AE방법에 의한 Flash Butt 용접부의 파괴거동 평가)

  • 김용수;이하성;강동명
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.9-18
    • /
    • 1994
  • In this study, we conducted experimental tests to evaluate fracture behaviors of fresh-butt welded metal by Acoustic Emission technique. We selected similar welding and dissimilar welding process, the one welded for SM45C, SS41 and SUS304 of each material, the other for SM45C and SS41, SM45C and SUS304 and SS41 and SUS304. The fracturing processes of weld metal were estimatied through the fracture toughness test with compact tension specimens and fractography analysis. In ASTM test method E-399, type I curves for materials of this study were obtained by load-cod diagram of fracture toughness test. and 5% offset load( $P_{5}$) was estimated as the estimated crack initial load( $P_{Q}$), The estimated crack initial load( $P_{Q}$) of similar welding materials generally lower than base matal, and then SM45C appeared greatly in decreasing rate of PB, SS41 and SUS304 appeared in order. $P_{Q}$ of dissimilar welding materials were lower than the similar welding materials. $P_{Q}$ of welding of SM45C and SS41 appeared in small, SUS304 and SS41 appeared greatly in dissimilar welding materials. In fracture toughness test, AE counts increased before the inflection point of the slope, decreased after that. It was found that increasing of AE counts were due to the microcrack formation at the crack tip near the $P_{5}$ point through AE data. For welding materials in this study, both low and high AE amplitude appeared simulataneously. It was confirmed that the low AE amplotude was due to formation of micro void, micro crack or micro dimple, the high AE amplitude was caused by microvoid coalescence and quasi-cleavage fracture through analyses of fractograpy.apy.apy.apy.

  • PDF

Evaluation of Fracture Toughness and the Micro-Fracture Mechanism of Porous Glass Composite by Using Acoustic Emission Technique (음향방출법을 이용한 글래스 복합재료의 파괴인성 및 미시파괴과정의 평가)

  • 정희돈;권영각;장래웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1388-1398
    • /
    • 1994
  • The fracture toughness and micro-fracture mechanisms of the porous glass and stainless fiber reinforced glass composite were evaluated by using the acoustice mission(AE) technique, fracture toughness $test(K_{IC})$ and the macroscopic observation of the specimen surface which was being under the loading. At initial portion of the loading, the AE signals with low energy, of which origins were considered as the micro-cracks formated at the crack tip, were emitted. With increasing the applied load, AE signals having higher energies were generated due to the coalesence of micro-cracks and fast fracture. Based on the such relationship between AE emission and loading condition, fracture toughness $K_{IAE}$ could be defined successfully be using the $K_I$ value corresponding to an abrupt change of the accumulated AE signal energies emitted during the fracture toughness test. In spite of its brittleness of glass material, nonlinear deformation behavior before maximum load was observed due to the formation of micro-cracks. Further, the stainless fiber may have attributed to the improvement of fracture toughness and the resistance to crack propagation comparing to noncomposited materials Finally, models of the micro-fracture process combined with the AE sources for the porous glass material and its composite were proposed paying attention to the micro-crack nucleation and its coalescence at the crack tip. Fiber fracture and its Pullout, deformation of fiber itself were also delinated from the model.

Evolution of sandstone shear strength parameters and its mesoscopic mechanism

  • Shi, Hao;Zhang, Houquan;Song, Lei
    • Geomechanics and Engineering
    • /
    • v.20 no.1
    • /
    • pp.29-41
    • /
    • 2020
  • It is extremely important to obtain rock strength parameters for geological engineering. In this paper, the evolution of sandstone cohesion and internal friction angle with plastic shear strain was obtained by simulating the cyclic loading and unloading tests under different confining pressures using Particle Flow Code software. By which and combined with the micro-crack propagation process, the mesoscopic mechanism of parameter evolution was studied. The results show that with the increase of plastic shear strain, the sandstone cohesion decreases first and then tends to be stable, while the internal friction angle increases first, then decreases, and finally maintains unchanged. The evolution of sandstone shear strength parameters is closely related to the whole process of crack formation, propagation and coalescence. When the internal micro-cracks are less and distributed randomly and dispersedly, and the rock shear strength parameters (cohesion, internal friction angle) are considered to have not been fully mobilized. As the directional development of the internal micro-fractures as well as the gradual formation of macroscopic shear plane, the rock cohesion reduces continuously and the internal friction angle is in the rise stage. As the formation of the macroscopic shear plane, both the rock cohesion and internal friction angle continuously decrease to a certain residual level.