• Title/Summary/Keyword: Cr-addition

Search Result 948, Processing Time 0.026 seconds

Effect of Cr Addition on the High Temperature Deformation Behavior of Fe-Al Intermetallics (Fe-Al 금속간 화합물의 고온변형거동에 미치는 Cr 첨가의 효과)

  • Bang W.;Lim H. T.;Ha T. K.;Song J. H.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.167-171
    • /
    • 2001
  • High temperature deformation behavior of Fe-28Al-5Cr alloy has been investigated known to show anomalous temperature dependence of yield strength. Specifically, the effect of Cr addition has been examined. A series of tensile and load relaxation tests have been carried out to obtain the flow behavior of Fe-28Al-5Cr alloy at the elevated temperatures. The flow curves have then been analyzed using the inelastic deformation theory recently proposed. Firstly, high temperature flow stress of iron aluminides can be resolved into internal stress and frictional stress. Secondly, the temperature corresponding to peak strength gets higher level at faster strain rate, which presumably due to the increased contribution of internal stress in observed flow stress. And thirdly, the alloying of Cr seems to cause solid-solution strengthening of frictional stress level and the elevation of 2nd order transition temperature. In this analogy, Fe-28Al-5Cr exhibits better strength especially at relatively higher temperature and lower strain rate than Fe-28Al.

  • PDF

Protective effects of Pharmacopuncture Solutions made by Carthmi Flos, Cnidii Rhizoma and Astragali Radix on C6 glioma cells (홍화(紅花), 천궁(川芎), 황기 약침액(藥鍼液)의 뇌교세포주 보호 효과)

  • Kim, Hyung-Woo;Cho, Su-In;Kim, Il-Hwan
    • Journal of Pharmacopuncture
    • /
    • v.12 no.2
    • /
    • pp.31-40
    • /
    • 2009
  • Objective : This study was carried out to investigate protective effects of Pharmacopuncture Solutions (PSs) made by Carthmi Flos (CF), Cnidii Rhizoma (CR) and Astragali Radix (AR) on C6 glioma cells Methods : We investigated the effects of PSs on proliferation rates and types of C6 cells, and also investigated the effects on LDH release. In addition, protective effects of PSs on oxidative stress induced by hydrogen peroxide and SOD-like activities were also investigated. Results : PSs made by CF, CR and AR did not show cytotoxicity in various concentrations. CF-PS and AR-PS elevated levels of proliferation rates significantly. Treatment with CF-PS lowered level of LDH release in C6 cells. In addition, CF-PS and CR-PS showed protective effects on cell death induced by hydrogen peroxide respectively. Finally, CF-PS group showed high level of SOD-like activity compared to that in CR-PS group. Conclusion : These results suggest that CF-PS can accelerate proliferation of neuroglial cells, and has protective action against oxidative stress, which was involved in anti-oxidative effects such as SODlike activities. In addition, CR has protective effects against oxidative stress, and AR can accelerate proliferation of neuroglial cells.

Effects of 3rd Element Additions on the Oxidation Resistance of TiAi Intermetallics (합금원소 첨가가 TiAI계의 내산화성에 미치는 영향)

  • Kim, Bong-Gu;Hwang, Seong-Sik;Yang, Myeong-Seung;Kim, Gil-Mu;Kim, Jong-Jip
    • Korean Journal of Materials Research
    • /
    • v.4 no.6
    • /
    • pp.669-680
    • /
    • 1994
  • Oxidation behaviour of TiAl intermetallic compounds with the addition of Cr, V, Si, Mo, or Nb was investigated at 900~$1100^{\circ}C$ under the atmospheric environment. The reaction products were examined by XRD, SEM equipped with WDX. The weight gain by continuous oxidation increased with the addition of Cr or V, but there was less weight gain when Mo, Si or Nb was added individually. he oxidation rate of Cr- or V-added TiAl was always larger than that of TiAI. However, oxidation rate of Si-, Mo- or Nb-added TiAl was almost same or smaller than that of TiAI. Thus, it is concluded that the addition of Cr or V did not improve the oxidation resistance, whereas the addition of Si, Mo or Nb improved the oxidation resistance. Oxides formed on TiAl with Mo, Si, and Nb were found to be more protective, resulting from the decrease in diffusion rate of the alloying elements and oxygen. Nb strengthened the tendency to form $AI_{2}O_{3}$ in the early stage of oxidation, due to the continuous $AI_{2}O_{3}$ layer formation and dense $Tio_{2}+AI_{2}O_{3}$ layer. According to the Pt-marker test of TiAI- 5wt%Nb, oxygen diffused mainly inward while oxides were formed on the substrate surface. Upon thermal cyclic oxidation at $900^{\circ}C$, it is shown that the addition of Cr or Nb improved the adherence of oxide scale to the substrate.

  • PDF

Effect of Si Addition on the Corrosion properties of CrZrN Thin Films (CrZrN 박막의 Si 첨가에 따른 부식 특성 향상에 관한 연구)

  • Kim, Beom-Seok;O, Jong-Ho;Kim, Jae-Yong;Lee, Sang-Yul
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.190-190
    • /
    • 2011
  • CrZrN 박막은 우수한 기계적 특성과 우수한 표면 조도특성을 가지고 있다. 본 연구에서는 CrZrN 박막에 Si를 첨가하여 CrZrN 박막의 부식 특성 향상을 알아보기 위하여 염수 분무 실험과 분극실험을 통하여 박막의 부식 특성을 평가하였다. Si의 함량이 증가함에 따라 부식 특성이 향상되는 것을 알 수 있었다.

  • PDF

Effects of Mo on the Passive Films Formed on Ni-(15, 30)Cr-5Mo Alloys in pH 8.5 Buffer Solution

  • Jang, Hee-Jin;Kwon, Hyuk-Sang
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.3
    • /
    • pp.258-262
    • /
    • 2009
  • The composition and semiconducting properties of the passive films formed on Ni- (15, 30)Cr-5Mo alloys in pH 8.5 buffer solution were examined. The depth concentration profile of passive films formed on Ni-(15, 30)Cr-5Mo in pH 8.5 buffer solution showed that Mo enhances the enrichment of Cr. The Mott-Schottky plot for the passive film on Ni-(15, 30)Cr- 5Mo closely resembled that for the film on Cr, whereas those for the less Cr-enriched film on Mo-free alloys showed similar behavior to that for the film on Ni. The acceptor density was reduced by increasing Cr content in Ni-(15, 30)Cr-(0, 5)Mo alloys, but addition of Mo considerably increased the acceptor density.

Innovative Approaches to Increase the Longevity of PRBs Containing Zero-Valent Iron

  • 이태윤;박재우;최은경;허보연
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.122-124
    • /
    • 2002
  • The removal capacity of zero-valent iron for Cr(Ⅵ) was evaluated using batch kinetic tests. The rate constants for zero-valent iron dramatically increased as initial Cr(Ⅵ) concentration decreased. Generally, the reaction rates of Cr(Ⅵ) with zero-valent iron were faster than that of a biotic degradation of Cr(Ⅵ), and furthermore the reaction rates were inversely proportional to the initial Cr(Ⅵ) concentrations. After certain reaction time elapsed. no further decrease of Cr(Ⅵ) was observed, indicating a loss of iron reactivity. The loss of iron reactivity was primarily due to the passivation of iron surfaces with iron-Cr precipitates, but the reactivity of iron was recovered by adding iron-reducing bacteria. Even though the addition of bacteria itself removed Cr(Ⅵ), the combination of iron-reducing bactera and oxidized iron significantly enhanced the reaction rate for Cr(Ⅵ) removal. The results from column tests also confirmed that the innoculation of iron-reducing bacteria to the column containing completely oxidized iron partially enhanced the recovery of the iron reactivity.

  • PDF

Codeposition of Al and Cr by pack cementation (팩 세멘테이션에 의한 Al 및 Cr의 동시 코팅)

  • Sohn, Hee-Sik;Lee, Yoon-Je;Kim, Moon-Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.2
    • /
    • pp.127-136
    • /
    • 1995
  • The simultaneous addition of Al and Cr to the surface of Ni-and Fe-base alloy provides enhanced resistance to oxidation and corrosion in high temperatures. However, because of the large differences in thermodynamic stabilities of the volatile halides of Al and Cr, the codeposition of Al and Cr by halideactivated pack cementation is only possible for very specific, limited combinations of conditions. In this study, the experiments on the combinations of various metallic source powders and activators were conducted in order to obtain codeposition layers of Al and Cr on Ni with adequate composition by pack cementation. When Cr-Al masteralloy was used as a source powder, it was not easy to control Al and Cr content sensitively in the coating layers. On the other hand, when pure Cr and Al powder was used, ${\beta}$-NiAl layer containing about 20wt % Cr was obtained.

  • PDF

Effects of Natural Organic Matter (NOM) on Cr(Ⅵ) reduction by Fe(II) (Fe(II)을 이용한 Cr(Ⅵ) 환원시 천연유기물의 영향)

  • 한인섭
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.10a
    • /
    • pp.81-84
    • /
    • 1999
  • The aqueous geochemical characteristics of Cr(III) and Cr(Ⅵ) in environmental systems are very different from one another: Cr(Ⅵ) is highly soluble, mobile and toxic relative to Cr(III) Reduction of Cr(Ⅵ) to Cr(III) are beneficial in aquatic systems because of the transformation of a highly mobile and toxic species to one having a low solubility in water, thus simultaneously decreasing chromium mobility and toxicity. Fe(II) species are excellent reductants for transforming Cr(Ⅵ) to Cr(III), and in addition, keeping Cr(III) concentrations below the drinking water standard of 52 ppb at pH values between 5 and 11. Investigations of the effects of NOM on Cr(Ⅵ) reduction are for examining the feasibility of using ferrous iron to reduce hexavalent chromium in subsurface environments. Experiments in the presence of soils, however, showed that the solid phase consumes some of the reducing capacity of Fe(II) and makes the overall reduction kinetics slower. The soil components bring about consumption of the ferrous iron reductant. Particular attention is devoted to the complexation of Fe(II) by NOM and the subsequent effect on Cr(Ⅵ) reduction. Cr(Ⅵ) reduction rate by Fe(II) was affected by the presence of NOM (humic acid), The effects of humic acid was different from the solution pH values and the concentration of humic acid. It was probably due to the reactions between humic acid and Cr(Ⅵ), humic acid and Fe(II), and between Cr(Ⅵ) and Fe(II), at each pH.

  • PDF

Effects of Alloying Elements on the Surface Characteristics of Fe-38Al Intermetallic Compounds (Fe-38 at.% Al계 금속간화합물의 표면특성에 미치는 합금원소의 영향)

  • 최한철
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.2
    • /
    • pp.128-136
    • /
    • 2004
  • Effects of alloying elements on the surface characteristics of Fe-38Al intermetallic compounds were investigated using potentiostat. The specimens were casted by the vacuum arc melting. The subsequent homogenization and the stabilization led to the homogeneous DO$_3$ structure of the specimen. After the corrosion tests, the surface of the tested specimen was observed by the optical microscopy and scanning electron microscopy(SEM). For Fe-38 at.% Al intermetallic compound, the addition of Cr and Mo proved to be beneficial in decreasing the grain boundary attack by decreasing the active current density. Addition of Band Nb resulted in a higher active current density and also a higher passive current density. These results indicated the role of Cr and Mo in improving the pitting corrosion resistance of Fe-38 at.%Al intermetallic compound. Band Nb addition to Fe-38 at.%Al accelerated the granular corrosion. Fe-38 at.%Al containing Cr and Mo showed remarkably improved pitting corrosion resistance in comparison with Band Nb addition to Fe-38 at. %Al.

Influence of Mo addition on the Mechanical Properties of 13Cr Martensitic Stainless Steel (13Cr마르텐사이트계 스테인리스강의 기계적성질에 미치는 Mo첨가의 영향)

  • Kim, Ki-Yeob;Jung, Byong-Ho;Kim, Mu-Gil;Park, Chan;Ahn, Yong-Sik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.3
    • /
    • pp.207-215
    • /
    • 1998
  • 13%Cr martensitic stainless steel was microalloyed with 0~1.5%Mo, and the mechanical properties were tested at the various heat treated conditions. Mo addition increased austenitization temperature(Ac1), and had little influence on the hardness and tensile properties at the annealed condition. The higher the austenitizing temperature, the higher the hardness and tensile strength, but Mo addition decreased those properties. The impact energy after austenitization increased with addition of Mo. The decrease of mechanical properties and increase of impact energy of Mo-alloyed steel after austenitization are thought to be caused by formation of ductile ${\delta}$-ferrite phase in the microstructure.

  • PDF