• Title/Summary/Keyword: Cr-N films

Search Result 140, Processing Time 0.025 seconds

Deposition of (Ti, Cr, Zr)N-$MoS_{2}$ Thin Films by D.C. Magnetron Sputtering

  • Kim, Sun-Kyu;Vinh, Pham-Van
    • Journal of Surface Science and Engineering
    • /
    • v.39 no.6
    • /
    • pp.263-267
    • /
    • 2006
  • As technology advances, there is a demand for development of hard solid lubricant coating. (Ti, Cr, Zr)N-$MoS_2$ films were deposited on AISI H13 tool steel substrate by co-deposition of $MoS_2$ with (Ti, Cr, Zr)N using a D.C. magnetron sputtering process. The influence of the $N_2Ar$ gas ratio, the amount of $MoS_2$ in the films and the bias voltage on the mechanical and structural properties of the films were investigated. The highest hardness level was observed at the $N_2/Ar$ gas ratio of 0.3. Hardness of the films did not change much with the increase of the $MoS_2$ content in the films. As the substrate bias potential was increased, hardness level of the film reached maximum at -150 V. Surface morphology of these films indicated that high hardness was attributed to the fine dome structure.

High-temperature Oxidation of the TiAlCrSiN Film (TiAlCrSiN 박막의 고온 산화 부식)

  • Lee, Dong-Bok;Kim, Min-Jeong;Abro, M.A.;Yadav, P.;Shi, Y.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.107-107
    • /
    • 2016
  • TiCrAlSiN films were developed in order to improve the high-temperature oxidation resistance, corrosion resistance, and mechanical properties of conventional TiN films that are widely used as hard films to protect and increase the lifetime and performance of cutting tools or die molds. In this study, a nano-multilayered TiAlCrSiN film was deposited by cathodic arc plasma deposition. It displayed relatively good oxidation resistance at $700-900^{\circ}C$, owing to the formation protective oxides of $Al_2O_3$, $Cr_2O_3$, and $SiO_2$, and semiprotective $TiO_2$. At $1000^{\circ}C$, the increased temperature led to the formation of the imperfect oxide scale that consisted primarily of the outer ($TiO_2$,$Al_2O_3$)-mixed scale and inner ($TiO_2$, $Al_2O_3$, $Cr_2O_3$)-mixed scale.

  • PDF

The Annealing Characteristics of Chromiun Nitride Thin-Film Strain Gauges (크롬질화박막형 스트레인 게이지의 열처리 특성)

  • 서정환;박정도;김인규;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.692-695
    • /
    • 1999
  • This paper presents annealing characteristics of CrN thin-film strain gauges, which were deposited on glass by DC reactive magnetron sputtering in an argon-nitrogen atmosphere)Ar-(5-~25%)$N_2$. The physical and electrical characteristics of these films investigated with the thickness range 3500$\AA$ of CrN thin films, annealing temperature (100~30$0^{\circ}C$) and annealing time (24-72hr) . The optimized condition of CrN thin-film strain gauges were thickness range of 3500$\AA$ and annealing condition(30$0^{\circ}C$ , 48hr) in Ar-10%$N_2$ deposition atmosphere. Under optimum conditions, the CrN thin-films for strain gauge is obtained a high resistivity, $\rho$=1147.65$\Omega$cm a low temperature coefficient of 11.17. And change in resistance after annealing for the CrN thin film were quitely linear and stable.

  • PDF

Structural Properties of Ammoniated Thin Cr Films with Oxygen Incorporated During Deposition (산소가 혼입된 Cr 박막의 질화처리에 따른 구조적 특성)

  • Kim, Jun;Byun, Changsob;Kim, Seontai
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.194-200
    • /
    • 2014
  • Metallic Cr film coatings of $1.2{\mu}m$ thickness were prepared by DC magnetron sputter deposition method on c-plane sapphire substrates. The thin Cr films were ammoniated during horizontal furnace thermal annealing for 10-240 min in $NH_3$ gas flow conditions between 400 and $900^{\circ}C$. After annealing, changes in the crystal phase and chemical constituents of the films were characterized using X-ray diffraction (XRD) and energy dispersive X-ray photoelectron spectroscopy (XPS) surface analysis. Nitridation of the metallic Cr films begins at $500^{\circ}C$ and with further increases in annealing temperature not only chromium nitrides ($Cr_2N$ and CrN) but also chromium oxide ($Cr_2O_3$) was detected. The oxygen in the films originated from contamination during the film formation. With further increase of temperature above $800^{\circ}C$, the nitrogen species were sufficiently supplied to the film's surface and transformed to the single-phase of CrN. However, the CrN phase was only available in a very small process window owing to the oxygen contamination during the sputter deposition. From the XPS analysis, the atomic concentration of oxygen in the as-deposited film was about 40 at% and decreased to the value of 15 at% with increase in annealing temperature up to $900^{\circ}C$, while the nitrogen concentration was increased to 42 at%.

A STUDY ON WEAR AND CORROSION RESISTANCE OF CrN$_{x}$ FILMS BY CATHODIC ARC ION PLATING PROCESS

  • Han, Jeon-G.;Kim, Hyung-J.;Kim, Sang-S.
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.545-548
    • /
    • 1996
  • $CrN_x$ films were deposited on SKD61 and S45C by cathodic arc ion plating process. In this study, the microstructure, microhardness, a hesion, wear and corrosion properties of the CrNx films were studied for various nitrogen partial pressures and the results were compared with those from the electroplated hard Cr. The crystal structure of the films was characterized by X-ray diffraction. Wear tests were performed under no lubricant condition at atmosphere by ball-on-disc type tribotester. Corrosion resistance of the films were studied by electrochemical corrosion test, measuring current demsity-potential curves. The results indicated that the $CrN_x$ films formed using ion plation method showed higer hardness and lower current density, friction coefficient than electroplated hard Cr. Consequently, the application of the CrNx coationgs by ion plating which is free of environmental pollution, is expected to improve lifetime of components in industrial practice.

  • PDF

Nucleation and growth mechanism of nitride films deposited on glass by unbalanced magnetron sputtering (마그네트론 스퍼터링에 의하여 다양한 기판 위에 증착된 CrN 박막의 핵생성과 성장거동)

  • 정민재;남경훈;한전건
    • Journal of Surface Science and Engineering
    • /
    • v.35 no.1
    • /
    • pp.33-38
    • /
    • 2002
  • For the evaluation of nucleation and growth behaviors influenced by substrate properties, such as surface energy, structure and electrical properties, chromium nitride films (CrN) were deposited on various substrates (glass, AISI 1040 steel and Si (110) by unbalanced magnetron sputtering. X-ray diffraction and Atomic Force Microscopy (AFM) were used to study the microstructure and grain growth as a function of deposition time. The diffraction patterns of CrN thin films deposited on Si (110) exhibited crystalline structure with highly preferred orientation of (200) plane parallel to the substrate, whereas the films deposited on glass and AISI 1040 exhibited preferred orientations (200) and minor orientation (111), (311) or (220) plane. The orientation of films deposited both on glass and Si substrates did not depend on the bias voltage (Vs). The grain growth and structure of film deposited on AISI 1040 steel substrate are strongly influenced by the substrate bias in comparison with that deposited onto glass and Si substrates. The differences in the structure and grain growth of CrN films deposited onto different substrates are predominantly related to the properties of the substrate (structure and electrical conductivity).

Comparative study of microstructure and mechanical properties for films with various deposition rate by magnetron sputtering

  • Nam, Kyung H.;Jung, Yun M.;Han, Jeon G.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.12-12
    • /
    • 2000
  • This paper investigated the effect of the film deposition rate for $CrN_x$ microstructure and mechanical properties. For these purpose, pure Cr an stoichiometric CrN films were deposited with various target power density on Si hardened M2 tool steel. The variation of ni trogen concentration in $CrN_x$ f analyzed by AES and deposition rate was calculated by measuring of thickness using ${\alpha}-step$ profilometer. The microstructure was analyzed by X-Ray Diffract and Scanning Electron Microscopy(SEM), and mechanical properties were evalua residual stress, microhardness and adhesion tests. Deposition rate of Cr and CrN increased as an almost linear function of target power density from $0.25\mu\textrm{m}/min$ and $0.15\mu\textrm{m}/min$ to $0.43\mu\textrm{m}/min$. Residual stresses of Cr and CrN films were from tensi Ie to compressive stress with an increase of deposi tion rate a compressive stresses were increased as more augmentation of deposition r maximum hardness value of $2300kg/\textrm{mm}^2$ and the best adhesion strength correspond HF 1 were obtained for CrN film synthesized at the highest target densitY($13.2W/\textrm{mm}^2$) owing to high residual compressive stress and increasing mobility.

  • PDF

High temperature air-oxidation of CrAlSiN thin films (CrAlSiN 박막의 대기중 고온산화)

  • Hwang, Yeon-Sang;Won, Seong-Bin;Chunyu, Xu;Kim, Seon-Gyu;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.53-54
    • /
    • 2013
  • Nano-multilayered CrAlSiN films consisting of crystalline CrN nanolayers and amorphous AlSiN nanolayers were deposited by cathodic arc plasma deposition. Their oxidation characteristics were studied between 600 and $1000^{\circ}C$ for up to 70 h in air. During their oxidation, the amorphous AlSiN nanolayers crystallized. The formed oxides consisted primarily of $Cr_2O_3$, ${\alpha}-Al_2O_3$, $SiO_2$. The outer $Al_2O_3$ layer formed by outward diffusion of Al ions. Simultaneously, an inner ($Al_2O_3$, $Cr_2O_3$)-mixed layer formed by the inward diffusion of oxygen ions. $SiO_2$ was present mainly in the lower part of the oxide layer due to its immobility. The CrAlSiN films displayed good oxidation resistance, owing to the formation of oxide crystallites of $Cr_2O_3$, ${\alpha}-Al_2O_3$, and amorphous $SiO_2$.

  • PDF

Degradation of Soft Magnetic Properties of Fe-Hf-N/Cr/SiO2 Thin Films Reacted with Bonding Glass (접합유리와 반응된 Fe-Hf-N/Cr/SiO2 박막의 연자기 특성 열화)

  • Je Hae-June;Kim Byung-Kook
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.780-785
    • /
    • 2004
  • The degradation mechanism of soft magnetic properties of $Fe-Hf-N/Cr/SiO_2$ thin films reacted with a bonding glass was investigated. When $Fe-Hf-N/Cr/SiO_2$ films were annealed under $600^{\circ}C$ without the bonding glass, the compositions and the soft magnetic properties of Fe-Hf-N layers were not changed. However, after reaction with the bonding glass at $550^{\circ}C$, the soft magnetic properties of the film were degraded. At $600^{\circ}C$, the saturation magnetization of the reacted film decreased to 13.5 kG, and its coercivity increased to 4 Oe, and its effective permeability decreased to 700. It was founded that O diffused from the glass into the Fe-Hf-N layers during the reaction and generated $HfO_2$ phases. It was considered that the soft magnetic properties of the $Fe-Hf-N/Cr/SiO_2$ films reacted with the bonding glass were primarily degraded by the formation of the Fe-Hf-O-N layer of which the Fe content was below 60 $at\%$, and secondarily degraded by the Fe-Hf-O-N layer above 70 $at\%$.

Soft Magnetic Properties of Fe-Hf-N Films Reacted with Bonding Glass (접합유리와 반응된 Fe-Hf-N 박막의 연자기 특성)

  • Kim, Kyung-Nam;Kim, Byong-Ho;Je, Hae-June
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.1
    • /
    • pp.6-14
    • /
    • 2003
  • The purpose of this study is to investigate the effect of chemical reaction with a bonding glass on physical and magnetic properties of Fe-Hf-N/SiO$_2$ and Fe-Hf-N/Cr/SiO$_2$ thin films. When the Fe-Hf-N/SiO$_2$ films were reacted with the bonding glass, the soft magnetic properties of them were extremely degraded. At $600^{\circ}C$, the saturation magnetization of the reacted film decreased to 1 kG, and its coercivity increased to 27 Oe, and its effective permeability decreased to 70. It was found that the degradation of soft magnetic properties of the Fe-Hf-N/SiO$_2$ films reacted with the bonding glass were attributed to the oxidation of the Fe-Hf-N layers to HfO$_2$ and Fe$_3$O$_4$. The soft magnetic properties of the Fe-Hf-N/Cr/SiO$_2$ films reacted with the bonding glass were degraded less than those of Fe-Hf-N/SiO$_2$ films. At $600^{\circ}C$, the saturation magnetization of the reacted film decreased to 13.5 kG, and its coercivity increased to 4 Oe, and its effective permeability decreased to 700. It was found that the Cr layer suppressed the oxidation of the Fe-Hf-N layers during the chemical reaction between the Fe-Hf-N layer and bonding glass.