• Title/Summary/Keyword: Cr-Al alloy

Search Result 236, Processing Time 0.021 seconds

A Study on the Adhesion Property of Al-Cr Alloy Films by Evaporation (진공증착법으로 제조된 Al-Cr 박막의 밀착성에 관한 연구)

  • 주봉환;이규환;권식칠;백운승;임수근
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.1
    • /
    • pp.19-28
    • /
    • 1994
  • A study on adhesion property of evaporated Al-Cr films was conducted on steel sheet by using two-source evaporator. Adhesion of Al-Cr coated steel was evaluated by tape test after $180^{\circ}$bending. Adhesion was decreased with increasing the Cr content in Al-Cr films. It was thought that the decrease in adhesion with increasing Cr content be related to insufficient wetting and diffusion of Cr atoms in the film. Best adhesion was achieved in the case of pure aluminum film..

  • PDF

Morphology Control of NiO Catalysts on NiCrAl Alloy Foam Using a Hydrothermal Method (수열합성법을 이용한 NiCrAl 합금 폼 위에 합성된 NiO 촉매 형상 제어)

  • Sin, Dong-Yo;Lee, Eun-Hwan;Park, Man-Ho;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.26 no.7
    • /
    • pp.393-399
    • /
    • 2016
  • Flower-like nickel oxide (NiO) catalysts were coated on NiCrAl alloy foam using a hydrothermal method. The structural, morphological, and chemical bonding properties of the NiO catalysts coated on the NiCrAl alloy foam were investigated by field-emission scanning electron microscopy, scanning electron microscopy-energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, respectively. To obtain flower-like morphology of NiO catalysts on the NiCrAl alloy foam, we prepared three different levels of pH of the hydrothermal solution: pH-7.0, pH-10.0, and pH-11.5. The NiO morphology of the pH-7.0 and pH-10.0 samples exhibited a large size plate owing to the slow reaction of the hydroxide ($OH^-$) and nickel ions ($Ni^+$) in lower pH than pH-11.5. Flower-like NiO catalysts (${\sim}4.7{\mu}m-6.6{\mu}m$) were formed owing to the fast reaction of $OH^-$ and $Ni^{2+}$ by increased $OH^-$ concentration at high pH. Thus, the flower-like morphology of NiO catalysts on NiCrAl alloy foam depends strongly on the pH of the hydrothermal solution.

Effect of Cr, Mo and W on the Microstructure of Al Hot Dipped Carbon Steels

  • Trung, Trinh Van;Kim, Min Jung;Park, Soon Yong;Yadav, Poonam;Abro, Muhammad Ali;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • A low carbon steel, Fe-2.25%Cr steel (ASTM T22), and Fe-2.25%Cr-1.6%W steel (ASTM T23) were aluminized by hot dipping into molten Al baths. After hot-dipping, a thin Al-rich topcoat and a thick alloy layer formed on the surface. The topcoat consisted primarily of a thin Al layer that contained a small amount of Fe, whereas the alloy layer consisted of Al-Fe intermetallics such as $Al_5Fe_2$ and AlFe. Cr, Mo, and W in T22 and T23 steels reduced the thickness of the topcoat and the alloy layer, and flattened the reaction front of the aluminized layer, when compared to the low carbon steel.

Thermal Stability of Mechanically Alloyed Al-(6~3wt.%)Cr-(3~6wt/%)Zr Alloys (기계적 합금화법으로 제조된 Al-(6~3wt.%)Cr-(3~6wt.%)Zr 합금의 열적 안정성)

  • Yang, Sang-Seon;Lee, Gwang-Min
    • Korean Journal of Materials Research
    • /
    • v.10 no.6
    • /
    • pp.403-408
    • /
    • 2000
  • The Al-Cr-Zr composite metal powders were prepared by mechanical alloying and consolidated by vacuum hot pressing. The microstructural characteristics and the thermal stability of the MA Al-Cr-Zr alloys were evaluated by means of microhardness measurement, XRD and TEM in order to develop high temperature, high strength aluminum alloys. The mechanical alloying was conducted in attritor with 300rpm for 20 hours. The density of the vacuum hot pressed Al-Cr-Zr alloy reached at 97% of theoretical one. After exposing at $300^{\circ}C$ for 100 hours, there is almost no variation in hardness change of the MA alloys. Even after exposing at $ 500^{\circ}C$ for 100 hours, the hardness of the alloy was decreased within 6% of the initial value. The fine stable $Al_3Zr\;and\; Al_{13}Cr_2$ intermetallics were formed at the stage of consolidation and heat treatment in aluminum matrix. The good thermal stability of the MA Al-Cr-Zr alloy can ab attributed to the role of the dispersoids, inhibiting grain growth of nanocrystalline, and the final grain size after heat treatment was less than 150nm.

  • PDF

Codeposition of Al and Cr by pack cementation (팩 세멘테이션에 의한 Al 및 Cr의 동시 코팅)

  • Sohn, Hee-Sik;Lee, Yoon-Je;Kim, Moon-Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.2
    • /
    • pp.127-136
    • /
    • 1995
  • The simultaneous addition of Al and Cr to the surface of Ni-and Fe-base alloy provides enhanced resistance to oxidation and corrosion in high temperatures. However, because of the large differences in thermodynamic stabilities of the volatile halides of Al and Cr, the codeposition of Al and Cr by halideactivated pack cementation is only possible for very specific, limited combinations of conditions. In this study, the experiments on the combinations of various metallic source powders and activators were conducted in order to obtain codeposition layers of Al and Cr on Ni with adequate composition by pack cementation. When Cr-Al masteralloy was used as a source powder, it was not easy to control Al and Cr content sensitively in the coating layers. On the other hand, when pure Cr and Al powder was used, ${\beta}$-NiAl layer containing about 20wt % Cr was obtained.

  • PDF

Effect of Powder Synthesis Method on the Microstructure of Oxide Dispersion Strengthened Fe-Cr-Al Based Alloys (Fe-Cr-Al 기 산화물 분산강화 합금의 미세조직에 미치는 분말제조 공정 영향)

  • Park, Sung Hyun;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.27 no.9
    • /
    • pp.507-511
    • /
    • 2017
  • An optimum route to fabricate oxide dispersion strengthened ferritic superalloy with desired microstructure was investigated. Two methods of high energy ball milling or polymeric additive solution route for developing a uniform dispersion of $Y_2O_3$ particles in Fe-Cr-Al-Ti alloy powders were compared on the basis of the resulting microstructures. Microstructural observation revealed that the crystalline size of Fe decreased with increases in milling time, to values of about 15-20 nm, and that an FeCr alloy phase was formed. SEM and TEM analyses of the alloy powders fabricated by solution route using yttrium nitrate and polyvinyl alcohol showed that the nano-sized Y-oxide particles were well distributed in the Fe based alloy powders. The prepared powders were sintered at 1000 and $1100^{\circ}C$ for 30 min in vacuum. The sintered specimen with heat treatment before spark plasma sintering at $1100^{\circ}C$ showed a more homogeneous microstructure. In the case of sintering at $1100^{\circ}C$, the alloys exhibited densified microstructure and the formation of large reaction phases due to oxidation of Al.

Effect of Cr Addition on the High Temperature Deformation Behavior of Fe-Al Intermetallics (Fe-Al 금속간 화합물의 고온변형거동에 미치는 Cr 첨가의 효과)

  • Bang W.;Lim H. T.;Ha T. K.;Song J. H.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.167-171
    • /
    • 2001
  • High temperature deformation behavior of Fe-28Al-5Cr alloy has been investigated known to show anomalous temperature dependence of yield strength. Specifically, the effect of Cr addition has been examined. A series of tensile and load relaxation tests have been carried out to obtain the flow behavior of Fe-28Al-5Cr alloy at the elevated temperatures. The flow curves have then been analyzed using the inelastic deformation theory recently proposed. Firstly, high temperature flow stress of iron aluminides can be resolved into internal stress and frictional stress. Secondly, the temperature corresponding to peak strength gets higher level at faster strain rate, which presumably due to the increased contribution of internal stress in observed flow stress. And thirdly, the alloying of Cr seems to cause solid-solution strengthening of frictional stress level and the elevation of 2nd order transition temperature. In this analogy, Fe-28Al-5Cr exhibits better strength especially at relatively higher temperature and lower strain rate than Fe-28Al.

  • PDF

A STUDY ON THE BOND STRENGTH OF HEAT-CURING ACRYIC RESIN BONDED TO A SURFACE OF CASTED ALLOY (주조 금속 표면과 열 중합 수지 표면간의 결합 강도에 관한 연구)

  • Lee, Yong-Seok;Chang, Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.620-631
    • /
    • 1996
  • Bonding of resin to cast alloy has traditionally been provided by mechanical retention. But, chemical bonding methods such as silicoating, tin plating, heat treatment, application of 4-META adhesives, have been developed to overcome the problems of the mechanical bonding methods. Silicoating has been used availaby in fixed prosthodontics, but is also reported to be used in removable prosthodontics. The aim of this study is to measure the tensile bond strength between resin and metal, and compare the effect of the type of metal and the grain size of the aluminum oxide on the bond strength, after metal surface roughening, coating of the opaque resin, and curing of heat-curing resin were performed. The test groups were divided into 4 groups according to the cast alloys and the aluminum oxide particles used. Group 1 : Type 4 gold alloy(DM66) blasted with $$50{\mu}m\;Al_{2}O_3$$ Group 2 : Type 4 gold alloy(DM66) blasted with $$250{\mu}m\;Al_{2}O_3$$, Group 3 : Co-Cr alloy(Nobilium) blasted with $$50{\mu}m\;Al_{2}O_3$$ Group 4 : Co-Cr alloy(Nobilium) blasted with $$250{\mu}m\;Al_{2}O_3$$ * 10 test specimens were made on each group. The specimens were thermocycled, and Instron Universal testing machine was used to measure the tensile bond strength of the finished specimens. The results were as follows : 1. Bond strengths showed that the group of gold alloy blasted with $250{\mu}m$ aluminum oxide particle had higher bond strength, and the group of gold alloy blasted with $50{\mu}m$ aluminum oxide particles had lower bond strength than any of the other groups. 2. Gold alloy had significantly higher bond strength when blasted with $250{\mu}m$ aluminum oxide particles than $50{\mu}m$, but. Co-Cr alloy showed no statistically significant difference between the two particle sizes. 3. When blasted with $50{mu}m$ aluminum oxide particles, Co-Cr alloy showed significantly higher bond strength than gold alloy. And, when blasted with $250{\mu}m$ aluminum oxide particles, gold alloy had significantly higher bond strength than Co-Cr alloy. 4. On the examination of the fractured sites, only the group of Co-Cr alloy blasted with $50{\mu}m$ aluminum oxide particles showed a part of residual opaque resin, but all the samples of the other groups fractured between the resin and the metal.

  • PDF

Hardening Characteristics of Aluminum Alloy Surface by PTA Overlaying with Metal Powders (I) (플라즈마분체 오버레이법에 의한 알루미늄합금 표면의 경화특성에 관한 연구(I) -후막 표면 합금화층의 형성조건과 그 조직-)

  • ;中田一博;;;松田福久
    • Journal of Welding and Joining
    • /
    • v.12 no.4
    • /
    • pp.85-101
    • /
    • 1994
  • Effect of Cr, Cu and Ni metal powders addition on the alloyed layer of aluminum alloy (AC2B) has been investigated with the plasma transferred arc (PTA) overlaying process. The overlaying conditions were 125-200A in plasma arc current, 150mm/min in process speed and 5-20g/min in powder feeding rate. Main results obtained are summarized as follows: 1) It was made clear that formation of thick surface alloyed layer on aluminum alloy is possible by PTA overlaying process. 2) The range of optimum alloying conditions were much wider in case of Cu and Ni powder additions than the case of Cr powder addition judging from the surface appearance and the bead macrostructure. 3) Alloyed layer with Cu showed almost the homogeneous microstructure through the whole layer by eutectic reaction. alloyed layers with Cr and Ni showed needle-like and agglomerated microstructures, the structure of which has compound layer in upper zone of bead by peritectic and eutectic-peritectic reactions, respectively. 4) Microconstituents of the alloyed layer were analyzed as A1+CrA $l_{7}$ eutectics, C $r_{2}$al sub 11/, CrA $l_{4}$, C $r_{4}$A $l_{9}$ and C $r_{5}$A $l_{*}$ 8/ for Cr addition, Al+CuA $l_{2}$(.theta.) eutectics and .theta. for Cu addition, and Al+NiA $l_{3}$ eutectics. NiA $l_{3}$, N $i_{2}$A $l_{3}$ and NiAl for Ni addition. 5) Concerning defect of the alloyed layer, many blow holes were seen in Cr and Ni additions although there was lesser in Cu addition. Residual gas contents in blow hole for Cu and Ni alloyed layer were confirmed as mainly $H_{2}$ and a littie of $N_{2}$ Cracking was observed in compound zone of the alloyed layer in case of Cr and Ni addition but not in Cu alloyed layer.r.r.

  • PDF

Micro-scale Observation of Corrosion of Hot-Dip Aluminized 11% Cr Stainless Steel

  • Cho, Min-Seung;Park, Choong-Nyeon;Park, Chan-Jin
    • Corrosion Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.73-77
    • /
    • 2019
  • Hot-dip aluminized coating has been widely used to protect steel substrate against corrosion. In this study, the corrosion behavior of hot-dip aluminized type 409L (11% Cr) stainless steel (SS) was investigated using macro- and micro-scale polarization tests. An Al-Fe-Si alloy layer that was formed due to inter-diffusion of alloying elements between Al coating and SS substrate was observed between Al coating and 409L SS substrate. In both macro- and micro-scale polarization tests, the corrosion potential ($E_{corr}$) of the 409L SS substrate was much nobler than that of the Al coating and alloy layer. $E_{corr}$ of the alloy layer was between that of Al coating and 409L SS substrate. This indicates that the alloy layer can act as a buffer between the more active Al coating and the nobler SS substrate for pit growth in aluminized SS. The presence of the alloy layer appears to be helpful in hindering pitting corrosion of aluminized SS.