• Title/Summary/Keyword: Cr carbides

Search Result 158, Processing Time 0.031 seconds

The Distribution Behavior of Alloying Elements in Matrices and Carbides of Chromium White Cast Iron (크롬백주철의 기지조직 및 탄화물에 있어서 합금원소의 거동)

  • Ryu, Seong-Gon
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.489-492
    • /
    • 2000
  • Three different white cast irons alloyed with Cr and Si were prepared in order to study their distribution be-havior in matrices and carbides. The specimens were produced using a 15kg-capacity high frequency induction fur-nace. Melts were super-heated to $1600^{\circ}C$, and poured at $1550^{\circ}C$ into a pepset mold. Three combinations of the alloys were selected so as to observe the distribution behavior of Cr and Si : 0.5%C-25.0%Cr-1.0%Si(alloy No. 1), 0.5%C-5.0%Cr-1.0%Si(alloy No. 2) and 2.0%C-5.0%Cr-1.0%Si(alloy No. 3). Cellular $M_7C_3$ carbides-$\delta$ferrite eutectic were developed at $\delta$ferrite liquid interfaces in the alloy No. 1 while only traces of $M_7C_3$ carbides-$\delta$ferrite eutectic were precipitated in the alloy No. 2. With the addition of 2.0% C and 5.0% Cr, ledeburitic $M_3C$ carbides instead of cellular $M_7C_3$ carbides were precipitated in the alloy No. 3. Cr was distributed preferentially to the $M_7C_3$ carbides rather than to the matrix structure while more Si was partitioned in the matrix structure rather than the $M_7C_3$ carbides. $K^m$ for Cr was ranged from 0.56 to 0.68 while that for Si was from 1.12 to 1.28. $K^m$ for Cr had a lower value with increased carbon contents. The mass percent of Cr was higher in the $M_7C_3$ carbides with increased Cr contents.

  • PDF

Depletion of Solid Solution Elements and Change of Carbides in Artificially Aging Heat Treated 2.25CrMo Steel (인공 경년열화 열처리된 2.25CrMo 강에서의 고용원소 고갈 및 탄화물 변화)

  • Byeon, Jal Won;Pyo, S.W.;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.2
    • /
    • pp.70-75
    • /
    • 2002
  • The depletion of solid solution elements from matrix and the change of carbides during artificial aging of 2.25CrMo steel at $630^{\circ}C$ were investigated. The Mo and Cr elements were found to be depleted drastically in the early stage of aging. The change of carbides was confirmed by analyzing the XRD patterns of electrolytically extracted carbides. Four type of carbides, $M_{23}C_6$, $M_3C$, $M_2C$ and $M_6C$, were found to exist in the specimen before aging. The amount of $M_6C$ carbides increased with aging time, while that of $M_3C$ carbides diminished after short aging time.

Effects of the Addition of Other Carbides on the Properties of Submicron WC-10% Co Cemented Carbides (초미립 WC-10%Co 초경합금의 물성에 미치는 타탄화물 첨가의 영향)

  • 이승원
    • Journal of Powder Materials
    • /
    • v.3 no.2
    • /
    • pp.86-90
    • /
    • 1996
  • The effects of added VC, Cr$_3$C$_2$ and TaC on the microstructures and properties of submicron WC-10%Co cemented carbides. The relative sintered density of compact was increased by addition of Cr$_3$C$_2$ but decreased oppositely by addition of VC or TaC. The growth of WC grains was significantly suppressed by addition of these carbides. The hardness of these alloys was increased by addition of other carbides and showed a maximum value by simultaneously added VC and Cr$_3$C$_2$. The transverse rupture strength(T.R.S.) was in- creased by addition of Cr$_3$C$_2$, while it was decreased by addition of VC or TaC. The relative sintered density and T.R.S. of these alloys were improved by HIP-treatment. The maximum T.R.S. was 328kg/mm$^2$ in the Wc-10%Co cemented carbide with addition of 0.5%VC.

  • PDF

A Novel Method to Calculate the Carbides Fraction from Dilatometric Measurements During Cooling in Hot-Work Tool Steel

  • Zhao, Xiaoli;Li, Chuanwei;Han, Lizhan;Gu, Jianfeng
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1193-1201
    • /
    • 2018
  • Dilatometry is a useful technique to obtain experimental data concerning transformation. In this paper, a dilation conversional model was established to calculate carbides fraction in AISI H13 hot-work tool steel based on the measured length changes. After carbides precipitation, the alloy contents in the matrix changed. In the usual models, the content of carbon atoms after precipitation is considered as the only element that affects the lattice constant and the content of the alloy elements such as Cr, Mo, Mn, V are often ignored. In the model introduced in this paper, the alloying elements (Cr, Mo, Mn, V) changes caused by carbides precipitation are incorporated. The carbides were identified using scanning electron microscope and transmission electron microscope. The relationship between lattice constant of carbides and temperature are measured by high-temperature X-ray diffraction. The results indicate that the carbides observed in all specimens cooled at different rates are V-rich MC and Cr-rich $M_{23}C_6$, and most of them are V-rich MC, only very few are Cr-rich $M_{23}C_6$. The model including the effects of substitutional alloying elements shows a good improvement on carbides fraction predictions. In addition, lower cooling rate advances the carbides precipitation for AISI H13 specimens. The results between experiments and mathematical model agree well.

On the Solubility of Chromium in Cubic Carbides in WC-Co

  • Norgren, Susanne;Kusoffsky, Alexandra;Elfwing, Mattias;Eriksson, Anders
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.338-339
    • /
    • 2006
  • The solubility of Cr in cubic carbides in the systems WC-Co-TaC and WC-Co-ZrC has been determined using equilibrium samples. Thermodynamic calculations were used to design the alloys through extrapolations of Gibbs energy expressions. The alloys were designed to have a microstructure containing the following phases: WC, liquid, $M_7C_3$, graphite and cubic carbide. The alloys were investigated using scanning electron microscopy and analyzed using energy-dispersive X-ray spectrometry. The present work shows how the Cr solubility depends on which cubic carbide former that is present. The WC-Co-Cr-Zr alloy has no detectable amount of Cr whereas the WC-Co-Cr-Ta alloy has 12% Cr in the cubic carbide.

  • PDF

Tensile Properties of Energy Saving Wire (ESW) with respect to Temperatures of High Frequency Induction Heat Treatment (고주파 열처리 온도에 따른 선조질강의 인장특성)

  • Lee, Jin Beom;Kang, Namhyun;Park, Ji Tae;Ahn, Soon-Tae;Park, Yeong-Do;Choi, Il-Dong;Nam, Dae-Geun;Cho, Kyung-mox
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.974-980
    • /
    • 2010
  • Various types of steel, namely, 0.35C, 0.2C-Cr, and 0.2C-Cr-Mo steels, were quenched and tempered by high-frequency induction heat treatment. The type, size, and spheroidization of the carbides varied depending on the tempering temperatures ($450{\sim}720^{\circ}C$). During the tempering process, the carbide was precipitated in the martensite matrix. The 0.35C, 0.2C-Cr, and 0.2C-Cr-Mo steels contained carbides that were smaller than 120 nm. The carbide was spheroidized as the tempering temperature increased. Owing to the fine microstructure and spheroidization of the carbides, all three steels had a high tensile strength as well as yield ratio and reduction of area. In the case of the 0.2C-Cr steel, the use of Cr as an alloying element facilitated the precipitation of alloyed carbides with an extremely small particle and resulted in an increase in the spheroidization rate of the carbides. As a result, a large reduction of area was achieved (>70%). The 0.2C-Cr-Mo steel had the highest tensile strength because of the high hardenability that can be attributed to the presence of alloying elements (Cr and Mo). Quenching and tempering steels by induction heat treatment resulted in a high strength of over 1 GPa and a large reduction of area (>70%) because of the rapid heating and cooling rates.

Complex heat-treatment effects on as-built CoCrMo alloy (적층공정법으로 제작된 CoCrMo 합금의 복합열처리 효과)

  • Lee, Jung-Il;Kim, Hung Giun;Jung, Kyung-Hwan;Kim, Kang Min;Son, Yong;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.6
    • /
    • pp.250-255
    • /
    • 2018
  • The CoCrMo as-built alloys prepared by 3D-printing process are studied on tensile strength, wear resistance, crystal structure and microstructure after complex heat-treatment including HIP. In this study, HIP treatment for removing micropores, ambient heat-treatment for formation of metal carbides, and solution heat-treatment for homogenization of the created metal carbides were tried and characterized for applying to artificial joint. The complex heat-treatment effects of the CoCrMo as-built alloys prepared by 3D-printing process were owing to the densification during HIP, formation of metal carbides and homogenization of the created metal carbides. The effects of the complex heat-treatment were confirmed by XRD, FE-SEM and EDS.

Study on microstructure of sensitized Alloy 600 rapidly solidified by a $CO_2$ laser beam ($CO_2$ 레이저빔을 이용한 예민화된 Alloy 600의 급속응고 미세구조 연구)

  • 임연수;서정훈;국일현;김정수
    • Laser Solutions
    • /
    • v.1 no.1
    • /
    • pp.18-23
    • /
    • 1998
  • A Study on microstructural changes of sensitized Alloy 600 which was rapidly solidified by a $CO_2$ laser beam was conducted using microscopic equipments such as SEM and TEM. Dissolution of Cr-rich carbides and resultant Cr recovery on the grain boundaries occurred in the heat affected zone (HZA). The microstructure of the laser melted zone (LMZ) having epitaxially solidified from the HAZ was mainly celluar-dendritic with the 〈100〉 crystallographic direction of growth. The Cr concentration was observed to increase along the cell bondaries, and tiny particles were distributed along the cell walls with tangled dislocations around them. Cr-rich carbides had been completely melted by the high density of a laser beam, and were not re-precipitated during the matrix solidification due to a fast cooling rate in the LMZ.

  • PDF

Changes of Carbide Characteristics and Magnetic Properties in Artificially Aging Heat Treated 2.25CrMo Steel (경년열화 열처리된 2.25CrMo 강에서의 탄화물 특성 및 자기적 성질의 변화)

  • Byeon, Jal Won;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.6
    • /
    • pp.323-329
    • /
    • 2001
  • Artificial aging was performed to simulate the microstructural degradation in 2.25CrMo steel arising from long time exposure at $540^{\circ}C$. The carbide morphologies were classified as acicular, pipe and globular type, and the number of carbides per unit area was measured for each type of carbides. The fine acicular carbides were found to diminish drastically in the initial stage of aging. An attempt was made to evaluate the microstructural degradation in artificially aging heat treated 2.25CrMo steel by the magnetic property measurements such as saturation magnetization, coercivity and remanence. The saturation magnetization showed no distinct trend with aging time. However, the coercivity and remanence were observed to decrease rapidly in initial 920 hours of aging time and then decrease slowly afterwards.

  • PDF

Effects of Carbide and Matrix Structures on Abrasion Wear Resistance of Multi-Component White Cast Iron (다합금계 백주철의 탄화물 및 기지조직이 내마모성에 미치는 영향)

  • Ryu, Seong-Geun
    • Korean Journal of Materials Research
    • /
    • v.7 no.4
    • /
    • pp.310-316
    • /
    • 1997
  • The effects of carbide and matrix structures on the abrasion wear resistance of multi-component white cast irons with 3.0 mass%C have been studied in this paper. Four different heats were poured in order to obtain the specimens with different combinations of the carbide structures: a basic iron(3.0 mass%C-5.0 mass%Cr-5.0 mass%V-5.0 mass% Mo-12.5mass%W)for M$_{6}$C and M$_{7}$C$_{3}$ carbides, and a Cr free iron(3.0 mass%C-5.0 mass%V-2.5mass%Mo-12.5 mass%W) for MC and M6C carbides. A conventional high Cr free free iron(3.0 mass%C-5.0 mass%V-2.5 mass%Mo-12.5 mass%W) for MC and M6C carbides. A conventional high Cr white cast iron was also poured to compare its wear resistance with those of the multi-component white cast irons. In the as-cast condition, the range of abrasive wear rate(Rw=mg/min) was from 4.15 to 5.98 . The lowest Rw, which means the highest wear resistance, was obtained in the basic iron with nodular MC, lamellar M$_{2}$C and cellular M$_{7}$C$_{3}$ carbides. On the other hand, the Rw of the high Cr white cast iron ranked between the basic iron and the Mo and W free iron. In each alloy, the Rw of air hardened or tempered specimen was lower than that of the as-cast one because of the change of matrix structures by the heat treatments. The Rw of the hear treated speci-mens increased in the order Mo and W free iron, basic iron, Cr free iron, high Cr iron, and V free iron.n.n.n.

  • PDF