• Title/Summary/Keyword: CpG methylation

Search Result 108, Processing Time 0.027 seconds

Methylation of CpG Islands in the Rat 7-dehydrocholesterol Reductase Promoter Suppresses Transcriptional Activation

  • Kim, Jai-Hyun;Hwang, Eun-Ha;Park, Hye-Jung;Paik, Young-Ki;Shim, Yhong-Hee
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.279-282
    • /
    • 2005
  • In mammals, 7-dehydrocholesterol reductase (Dhcr7) is the terminal enzyme in cholesterol biosynthesis. We previously reported that the Dhcr7 proximal promoter (-179 to +1), which contains CpG islands, is responsible for sterol-mediated expression of the rat gene. In the present study, we examined whether methylation of this region affects the transcriptional activity of the Dhcr7 gene. In vitro DNA methylation of the Dhcr7 promoter and luciferase-reporter assays showed that DNA methylation of the CpG islands suppressed transcription. Furthermore, treatment of the methylated Dhcr7 promoter with the demethylating agent, 5-aza-2'-deoxycytidine (5-Aza-CdR), reversed the suppression of promoter activity. These results indicate that methylation of the CpG islands is an important transcriptional regulatory mechanism in the Dhcr7 promoter.

Epigenetics by DNA Methylation for Normal and Cloned Animal Development

  • Shiota, Kunio
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.26-28
    • /
    • 2003
  • "Epigenetics" means the study of heritable changes in gene-activity without changes in DNA sequences. Methylation of the cytosine residue in a CpG dinucleotide sequence is a characteristic of the vertebrate genome. In vertebrates, methylation of DNA mainly occurs at the 5′-position of cytosine in a CpG dinucleotide forming 5-methylcytosine. Methylation of DNA plays a profound role in transcriptional repression of gene expression through several mechanisms. Generally, DNA of inactive genes is more heavily methylated than that of active ones; conversely demethylation of DNA reactivates gene expression in vivo and in vitro.

  • PDF

Effect of DNA methylation on the reactivity of DNA alkylating agents

  • Yoo, Ja-Kyung;Park, Hyun-Ju
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.359.1-359.1
    • /
    • 2002
  • In mammalian species, CpG dinucleotides are highly methylated with 60-90% methylation at the 5-position of cytosine. The pattern of DNA methylation in a cell dramatically affects the function of the DNA by switching genes on or off. Abnormal methylation events occur during aging and in the development of many cancers. Methylated CpG was reported recently to affect the reactivity of agents (mitomycin C and benzo [a]pyrenediolepoxide) that can fromguanine adducts in DNA. (omitted)

  • PDF

Identification of a novel PARP4 gene promoter CpG locus associated with cisplatin chemoresistance

  • Hye Youn Sung;Jihye Han;Yun Ju Chae;Woong Ju;Jihee Lee Kang;Ae Kyung Park;Jung-Hyuck Ahn
    • BMB Reports
    • /
    • v.56 no.6
    • /
    • pp.347-352
    • /
    • 2023
  • The protein family of poly (ADP-ribose) polymerases (PARPs) is comprised of multifunctional nuclear enzymes. Several PARP inhibitors have been developed as new anticancer drugs to combat resistance to chemotherapy. Herein, we characterized PARP4 mRNA expression profiles in cisplatin-sensitive and cisplatin-resistant ovarian cancer cell lines. PARP4 mRNA expression was significantly upregulated in cisplatin-resistant ovarian cancer cell lines, and this upregulation was associated with the hypomethylation of specific cytosine-phosphate-guanine (CpG) sites (cg18582260 and cg17117459) on its promoter. Reduced PARP4 expression was restored by treating cisplatin-sensitive cell lines with a demethylation agent, implicating the epigenetic regulation of PARP4 expression by promoter methylation. Depletion of PARP4 expression in cisplatin-resistant cell lines reduced cisplatin chemoresistance and promoted cisplatin-induced DNA fragmentation. The differential mRNA expression and DNA methylation status at specific PARP4 promoter CpG sites (cg18582260 and cg17117459) according to cisplatin responses, was further validated in primary ovarian tumor tissues. The results showed significantly increased PARP4 mRNA expressions and decreased DNA methylation levels at specific PARP4 promoter CpG sites (cg18582260 and cg17117459) in cisplatin-resistant patients. Additionally, the DNA methylation status at cg18582260 CpG sites in ovarian tumor tissues showed fairly clear discrimination between cisplatin-resistant patients and cisplatin-sensitive patients, with high accuracy (area under the curve = 0.86, P = 0.003845). Our findings suggest that the DNA methylation status of PARP4 at the specific promoter site (cg18582260) may be a useful diagnostic biomarker for predicting the response to cisplatin in ovarian cancer patients.

DNA Methylation changes in Human Cancers (인체 암의 DNA 메틸화 변화)

  • Kwon, Hyeong-Ju;Kang, Gyeong-Hoon
    • Journal of Genetic Medicine
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Epigenetic changes represented by promoter CpG island hypermethylation and histone modification are an important carcinogenetic mechanism, which is found in virtually all histologic types of human cancer. About 60-70% of human genes harbor CpG islands in their promoters and 5' exonal sequences, and some of them undergo aberrant promoter CpG island hypermethylation and subsequent downregulation of gene expression. The loss of expression in tumor suppressor or tumor-related genes results in acceleration of tumorigenic processes. In addition to regional CpG island hypermethylation, diffuse genomic hypomethylation represents an important aspect of DNA methylation changes occurring in human cancer cells and contributes to chromosomal instability. These apparently contrasting methylation changes occur not only in human cancer cells, but also in premalignant cells. CpG island hypermethylation has gained attention for not only the tumorigenic mechanistic process, but also its potential utilization as a tumor biomarker. DNA methylation markers are actively investigated for their potential uses as tumor biomarkers for diagnosis of tumors in body fluids, prognostication of cancer patients, or prediction of chemotherapeutic drug response. In this review, these aspects will be discussed in detail.

  • PDF

CpG Island Methylation Profile of Estrogen Receptor Alpha in Iranian Females with Triple Negative or Non-triple Negative Breast Cancer: New Marker of Poor Prognosis

  • Ramezani, Fatemeh;Salami, Siamak;Omrani, Mir Davood;Maleki, Davood
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.451-457
    • /
    • 2012
  • One decade early onset of the breast cancer in Iranian females was reported but the basis of the observed difference has remained unclear and difference in gene silencing by epigenetic processes is suggested. Hence, this study was sought to map the methylation status of estrogen receptor (ER) gene CpG islands and its impact on clinicopathological factors of triple negative and non-triple negative ductal cell carcinoma of the breast in Iranian females. Surgically resected formalin-fixed paraffin-embedded breast tissues from sixty Iranian women with confirmed invasive ductal carcinoma were assessed by methylation-specific PCR using primer sets encompassing some of the 29 CpGs across the ER gene CpG island. The estrogen and progesterone receptors, Her-$2^+$ overexpression, and nuclear accumulation of P53 were examined using immunohistochemistry (IHC). Methylated ER3, ER4, and ER5 were found in 41.7, 11.3, and 43.3% of the samples, respectively. Significantly higher methylation of ER4 was found in the tumors with nuclear accumulation of P53, and significantly higher methylation of ER5 was found in patients with lymph node involvement and tumor with bigger size or higher grades. Furthermore, significantly higher rate of ER5 methylation was found in patients with Her-$2^+$ tumors and in postmenopausal patients with $ER^-$, $PgR^-$, or $ER^-/PgR^-$ tumors. However, no significant difference in ERs methylation status was found between triple negative and non-triple negative tumors in pre- and postmenopausal patients. Findings revealed that aberrant hypermethylation of the ER-alpha gene frequently occurs in Iranian women with invasive ductal cell carcinoma of the breast. However, methylation of different CpG islands produced a diverse impact on the prognosis of breast cancer, and ER5 was found to be the most frequently methylated region in the Iranian women, and could serve as a marker of poor prognosis.

Methylation Status and Expression of E-cadherin in Oral Squamous Cell Carcinomas Compared t6 Benign Oral Epithelial Lesions

  • Son, Hyun-Jin;Chu, Jung-Youb;Cho, Eui-Sic;Lee, Dong-Geun;Min, Myung-Gee;Lee, Suk-Keun;Cho, Nam-Pyo
    • International Journal of Oral Biology
    • /
    • v.31 no.2
    • /
    • pp.27-32
    • /
    • 2006
  • Expression of invasion/metastasis suppressor, E-cadherin, is reduced in many types of human carcinomas. Although somatic and germline mutations in the CDH1, which encodes the human E-cadherin, have frequently been reported in cases with diffuse gastric and lobular breast cancers, irreversible genetic inactivations are rare in other human carcinomas. Recently, it has been well documented that some genes in human cancers may be inactivated by altered CpG methylation. Herein, we determined the expression and methylation status of E-cadherin in oral squamous cell carcinoma(SCC) by immunohistochemistry and methylation-specific PCR. The expression of E-cadherin was significantly higher in the well-differentiated oral SCCs than the moderately or poorly differentiated ones. None of eight tested benign epithelial hyperplasias showed aberrant methylation, whereas five of 12 oral squamous cell carcinomas showed aberrant methylation. When we compared E-cadherin expression with methylation status, oral SCCs with normal methylation showed a higher expression of E-cadherin than those with methylation. These findings suggest that aberrant CpG methylation of CDH1 promoter region is closely associated with transcriptional inactivation and might be involved in tumor progression of the oral mucosa.

Epigenetic Changes within the Promoter Regions of Antigen Processing Machinery Family Genes in Kazakh Primary Esophageal Squamous Cell Carcinoma

  • Sheyhidin, Ilyar;Hasim, Ayshamgul;Zheng, Feng;Ma, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10299-10306
    • /
    • 2015
  • The esophageal squamous cell carcinoma (ESCC) is thought to develop through a multi-stage process. Epigenetic gene silencing constitutes an alternative or complementary mechanism to mutational events in tumorigenesis. Posttranscriptional regulation of human leukocyte antigen class I (HLA-I) and antigen processing machinery (APM) proteins expression may be associated with novel epigenetic modifications in cancer development. In the present study, we determined the expression levels of HLA-I antigen and APM components by immunohistochemistry. Then by a bisulfite-sequencing PCR (BSP) approach, we identified target CpG islands methylated at the gene promoter region of APM family genes in a ESCC cell line (ECa109), and further quantitative analysis of CpG site specific methylation of these genes in cases of Kazakh primary ESCCs with corresponding non-cancerous esophageal tissues using the Sequenom MassARRAY platform. Here we showed that the development of ESCCs was accompanied by partial or total loss of protein expression of HLA-B, TAP2, LMP7, tapasin and ERp57. The results demonstrated that although no statistical significance was found of global target CpG fragment methylation level sof HLA-B, TAP2, tapasin and ERp57 genes between ESCC and corresponding non-cancerous esophageal tissues, there was significant differences in the methylation level of several single sites between the two groups. Of thesse only the global methylation level of LMP7 gene target fragments was statistically higher ($0.0517{\pm}0.0357$) in Kazakh esophageal cancer than in neighboring normal tissues ($0.0380{\pm}0.0214$, p<0.05). Our results suggest that multiple CpG sites, but not methylation of every site leads to down regulation or deletion of gene expression. Only some of them result in genetic transcription, and silencing of HLA-B, ERp57, and LMP7 expression through hypermethylation of the promoters or other mechanisms may contribute to mechanisms of tumor escape from immune surveillance in Kazakh esophageal carcinogenesis.

Gene expression and promoter methylation of porcine uncoupling protein 3 gene

  • Lin, Ruiyi;Lin, Weimin;Chen, Qiaohui;Huo, Jianchao;Hu, Yuping;Ye, Junxiao;Xu, Jingya;Xiao, Tianfang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.2
    • /
    • pp.170-175
    • /
    • 2019
  • Objective: Uncoupling protein 3 gene (UCP3) is a candidate gene associated with the meat quality of pigs. The aim of this study was to explore the regulation mechanism of UCP3 expression and provide a theoretical basis for the research of the function of porcine UCP3 gene in meat quality. Methods: Bisulfite sequencing polymerase chain reaction (PCR) and quantitative real-time PCR (Q-PCR) were used to analyze the methylation of UCP3 5′-flanking region and UCP3 mRNA expression in the adipose tissue or skeletal muscle of three pig breeds at different ages (1, 90, 210-day-old Putian Black pig; 90-day-old Duroc; and 90-day-old Dupu). Results: Results showed that two cytosine-guanine dinucleotide (CpG) islands are present in the promoter region of porcine UCP3 gene. The second CpG island located in the core promoter region contained 9 CpG sites. The methylation level of CpG island 2 was lower in the adipose tissue and skeletal muscle of 90-day-old Putian Black pigs compared with 1-day-old and 210-day-old Putian Black pigs, and the difference also existed in the skeletal muscle among the three 90-day-old pig breeds. Furthermore, the obvious changing difference of UCP3 mRNA expression was observed in the skeletal muscle of different groups. However, the difference of methylation status and expression level of UCP3 gene was not significant in the adipose tissue. Conclusion: Our data indicate that UCP3 mRNA expression level was associated with the methylation status of UCP3 promoter in the skeletal muscle of pigs.

Clinical Outcomes of Downregulation of E-cadherin Gene Expression in Non-small Cell Lung Cancer

  • Zheng, Shi-Ying;Hou, Jing-Yu;Zhao, Jun;Jiang, Dong;Ge, Jin-Feng;Chen, Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1557-1561
    • /
    • 2012
  • Objective: To investigate the promoter methylation status of the E-cadherin gene in non-small cell lung cancer (NSCLC) and its association with clinical pathological parameters, and to explore the relationship between downregulation of E-cadherin gene expression and the methylation status of its promoter region. Methods: Nested methylation-specific PCR was performed to examine CpG methylation within the 5' CpG island of the E-cadherin gene in lung cancer and para-cancerous tissue from 37 patients with primary non-small cell lung cancer. Quantitative real-time PCR was performed to measure the level of E-cadherin mRNA. Results: Of thirty-seven cases, 12 (32.4%) samples showed aberrant CpG methylation in tumor tissues compared with the corresponding normal tissues. In addition, a reduction in E-cadherin mRNA levels was observed in 11 of the 12 (91.7%) tumor tissues carrying a methylated E-cadherin gene. However, only 10 (43.5%) cases displayed reduced mRNA levels in tumor tissues from the remaining 23 cases (excluding 2 samples from which mRNA was unavailable) without methylation events. Downregulation of E-cadherin gene expression significantly correlated with the promoter methylation status of this gene. Conclusion: These results provide strong evidence that the methylation status of E-cadherin gene contributes to a reduction in the expression of E-cadherin mRNA, and may play a role in the development and progression of NSCLC.