• Title/Summary/Keyword: CpG Islands

Search Result 37, Processing Time 0.035 seconds

Classification of Colon Cancer Patients Based on the Methylation Patterns of Promoters

  • Choi, Wonyoung;Lee, Jungwoo;Lee, Jin-Young;Lee, Sun-Min;Kim, Da-Won;Kim, Young-Joon
    • Genomics & Informatics
    • /
    • v.14 no.2
    • /
    • pp.46-52
    • /
    • 2016
  • Diverse somatic mutations have been reported to serve as cancer drivers. Recently, it has also been reported that epigenetic regulation is closely related to cancer development. However, the effect of epigenetic changes on cancer is still elusive. In this study, we analyzed DNA methylation data on colon cancer taken from The Caner Genome Atlas. We found that several promoters were significantly hypermethylated in colon cancer patients. Through clustering analysis of differentially methylated DNA regions, we were able to define subgroups of patients and observed clinical features associated with each subgroup. In addition, we analyzed the functional ontology of aberrantly methylated genes and identified the G-protein-coupled receptor signaling pathway as one of the major pathways affected epigenetically. In conclusion, our analysis shows the possibility of characterizing the clinical features of colon cancer subgroups based on DNA methylation patterns and provides lists of important genes and pathways possibly involved in colon cancer development.

Genome-wide Methylation Analysis and Validation of Cancer Specific Biomarker of Head and Neck Cancer (전장유전체수준 메틸레이션 분석을 통한 두경부암 특이 메틸레이션 바이오마커의 발굴)

  • Chang, Jae Won;Park, Ki Wan;Hong, So-Hye;Jung, Seung-Nam;Liu, Lihua;Kim, Jin Man;Oh, Taejeong;Koo, Bon Seok
    • Korean Journal of Head & Neck Oncology
    • /
    • v.33 no.1
    • /
    • pp.21-29
    • /
    • 2017
  • Methylation of CpG islands in the promoter region of genes acts as a significant mechanism of epigenetic gene silencing in head and neck squamous cell carcinoma (HNSCC). DNA methylation markers are particularly advantageous because DNA methylation is an early event in tumorigenesis, and the epigenetic modification, 5-methylcytosine, is a stable mark. In the present study, we assessed the genome-wide preliminary screening and were to identify novel methylation biomarker candidate in HNSCC. Genome-wide methylation analysis was performed on 10 HNSCC tumors using the Methylated DNA Isolation Assay (MeDIA) CpG island microarray. Validation was done using immunohistochemistry using tissue microarray of 135 independent HNSCC tumors. In addition, in vitro proliferation, migration/invasion assays, RT-PCR and immunoblotting were performed to elucidate molecular regulating mechanisms. Our preliminary validation using CpG microarray data set, immunohisto-chemistry for HNSCC tumor tissues and in vitro functional assays revealed that methylation of the Homeobox B5 (HOXB5) and H6 Family Homeobox 2 (HMX2) could be possible novel methylation biomarkers in HNSCC.

Epigenetic insights into colorectal cancer: comprehensive genome-wide DNA methylation profiling of 294 patients in Korea

  • Soobok Joe;Jinyong Kim;Jin-Young Lee;Jongbum Jeon;Iksu Byeon;Sae-Won Han;Seung-Bum Ryoo;Kyu Joo Park;Sang-Hyun Song;Sheehyun Cho;Hyeran Shim;Hoang Bao Khanh Chu;Jisun Kang;Hong Seok Lee;DongWoo Kim;Young-Joon Kim;Tae-You Kim;Seon-Young Kim
    • BMB Reports
    • /
    • v.56 no.10
    • /
    • pp.563-568
    • /
    • 2023
  • DNA methylation regulates gene expression and contributes to tumorigenesis in the early stages of cancer. In colorectal cancer (CRC), CpG island methylator phenotype (CIMP) is recognized as a distinct subset that is associated with specific molecular and clinical features. In this study, we investigated the genome-wide DNA methylation patterns among patients with CRC. The methylation data of 1 unmatched normal, 142 adjacent normal, and 294 tumor samples were analyzed. We identified 40,003 differentially methylated positions with 6,933 (79.8%) hypermethylated and 16,145 (51.6%) hypomethylated probes in the genic region. Hypermethylated probes were predominantly found in promoter-like regions, CpG islands, and N shore sites; hypomethylated probes were enriched in open-sea regions. CRC tumors were categorized into three CIMP subgroups, with 90 (30.6%) in the CIMP-high (CIMP-H), 115 (39.1%) in the CIMP-low (CIMP-L), and 89 (30.3%) in the non-CIMP group. The CIMP-H group was associated with microsatellite instability-high tumors, hypermethylation of MLH1, older age, and right-sided tumors. Our results showed that genome-wide methylation analyses classified patients with CRC into three subgroups according to CIMP levels, with clinical and molecular features consistent with previous data.

Putative association of DNA methyltransferase 1 (DNMT1) polymorphisms with clearance of HBV infection

  • Chun, Ji-Yong;Bae, Joon-Seol;Park, Tae-June;Kim, Jason-Y.;Park, Byung-Lae;Cheong, Hyun-Sub;Lee, Hyo-Suk;Kim, Yoon-Jun;Shin, Hyoung-Doo
    • BMB Reports
    • /
    • v.42 no.12
    • /
    • pp.834-839
    • /
    • 2009
  • DNA methyltransferase (DNMT) 1 is the key enzyme responsible for DNA methylation, which often occurs in CpG islands located near the regulatory regions of genes and affects transcription of specific genes. In this study, we examined the possible association of DNMT1 polymorphisms with HBV clearance and the risk of hepatocellular carcinoma (HCC). Seven common polymorphic sites were selected by considering their allele frequencies, haplotype-tagging status and LDs for genotyping in larger-scale subjects (n = 1,100). Statistical analysis demonstrated that two intron polymorphisms of DNMT1, +34542G > C and +38565G > T, showed significant association with HBV clearance in a co-dominant model (OR = 1.30, $P^{corr}$ = 0.03) and co- dominant/recessive model (OR = 1.34-1.74, $P^{corr}$ = 0.01-0.03), respectively. These results suggest that two intron polymorphisms of DNMT1, +34542G > C and +38565G > T, might affect HBV clearance.

Regulatory Mechanism of Insulin-Like Growth Factor Binding Protein-3 in Non-Small Cell Lung Cancer (비소세포성 폐암에서 인슐린 양 성장 인자 결합 단백질-3의 발현 조절 기전)

  • Chang, Yoon Soo;Lee, Ho-Young;Kim, Young Sam;Kim, Hyung Jung;Chang, Joon;Ahn, Chul Min;Kim, Sung Kyu;Kim, Se Kyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.5
    • /
    • pp.465-484
    • /
    • 2004
  • Background : Insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) inhibits the proliferation of non-small cell lung cancer (NSCLC) cells by inducing apoptosis. Methods : In this study, we investigated whether hypermethylation of IGFBP-3 promoter play an important role in the loss of IGFBP-3 expression in NSCLC. We also studied the mechanisms that mediate the silencing of IGFBP-3 expression in the cell lines which have hypermethylated IGFBP-3 promoter. Results : The IGFBP-3 promoter has hypermethylation in 7 of 15 (46.7%) NSCLC cell lines and 16 (69.7%) of 23, 7 (77.8%) of 9, 4 (80%) of 5, 4 (66.7 %) of 6, and 6 (100%) of 6 tumor specimens from patients with stage I, II, IIIA, IIIB, and IV NSCLC, respectively. The methylation status correlated with the level of protein and mRNA in NSCLC cell lines. Expression of IGFBP-3 was restored by the demethylating agent 5'-aza-2'-deoxycytidine (5'-aza-dC) in a subset of NSCLC cell lines. The Sp-1/ Sp-3 binding element in the IGFBP-3 promoter, important for promoter activity, was methylated in the NSCLC cell lines which have reduced IGFBP-3 expression and the methylation of this element suppressed the binding of the Sp-1 transcription factor. A ChIP assay showed that the methylation status of the IGFBP-3 promoter influenced the binding of Sp-1, methyl-CpG binding protein-2 (MeCP2), and histone deacetylase (HDAC) to Sp-1/Sp-3 binding element, which were reversed by by 5'-aza-dC. In vitro methylation of the IGFBP-3 promoter containing the Sp-1/Sp-3 binding element significantly reduced promoter activity, which was further suppressed by the overexpression of MeCP2. This reduction in activity was rescued by 5'-aza-dC. Conclusion : These findings indicate that hypermethylation of the IGFBP-3 promoter is one mechanism by which IGFBP-3 expression is silenced and MeCP2, with recruitment of HDAC, may play a role in silencing of IGFBP-3 expression. The frequency of this abnormality is also associated with advanced stages among the patients with NSCLC, suggesting that IGFBP-3 plays an important role in lung carcinogenesis/progression and that the promoter methylation status of IGFBP-3 may be a marker for early molecular detection and/or for monitoring chemoprevention efforts.

Differential Expression of Interferon-Tau Transcripts in Bovine Blastocysts Produced by In Vitro Fertilization and Somatic Cell Nuclear Transfer

  • Song, Bong-Suk;Koo, Deog-Bon;Gabbine Wee;Shim, Jung-Jae;Kim, Ji-Su;Lee, Kyung-Kwang;Han, Yong-Mahn
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.228-228
    • /
    • 2004
  • Interferon-tau (IFN-τ) is the primary agent responsible for maternal recognition of pregnancy in cattle. Bovine embryos begine to express IFN-τ as the blastocyst forms. Pregnancy recognition in ruminants occurs when IFN-τ from the trophoblast prevents the increase of oxytocin receptors, disrupting luteolytic pulses of prostaglandin (PG) F2a by oxytocin. The expression of IFN-τ is strongly associated with the degree of methylation of the CpG islands in promoter region. (omitted)

  • PDF

Loss of Expression of Cyclin D2 by Aberrant DNA Methylation: a Potential Biomarker in Vietnamese Breast Cancer Patients

  • Truong, Phuong Kim;Lao, Thuan Duc;Doan, Thao Phuong Thi;Huyen Le, Thuy Ai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2209-2213
    • /
    • 2015
  • DNA methylation of tumor suppressor gene promoters is the most frequent phenomenon leading to inactivation of function, consequently driving malignant cell transformation. Cyclin D2 is implicated in tumor suppression. In our study, we carried out the MSP assay to evaluation the methylation status at CpG islands in the cyclin D2 promoter in breast cancer cases from the Vietnamese population. The results showed that the frequency of methylation reached 62.1% (59 of 95 breast cancer tumors), but was low in non-cancer specimens at 10% (2 of 20 non-cancer specimens). Additionally, with an RR (relative risk) and OR (odd ratios) of 6.21 and 14.8, DNA hypermethylation of cyclin D2 increased the possibility of malignant transformation. Our results confirmed the cyclin D2 hypermethylation could be used as the potential biomarker which could be applied in prognosis and early diagnosis of Vietnamese breast cancer patients.

BRCA1 Promoter Hypermethylation Signature for Early Detection of Breast Cancer in the Vietnamese Population

  • Truong, Phuong Kim;Lao, Thuan Duc;Doan, Thao Phuong Thi;Huyen, Thuy Ai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9607-9610
    • /
    • 2014
  • Breast cancer, a leading cause of death among women in most countries worldwide, is rapidly increasing in incidence in Vietnam. One of biomarkers is the disruption of the genetic material including epigenetic changes like DNA methylation. With the aim of finding hypermethylation at CpG islands of promoter of BRCA1 gene, belonged to the tumor suppressor gene family, as the biomarker for breast cancer in Vietnamese population, sensitive methyl specific PCR (MSP) was carried out on 115 samples including 95 breast cancer specimens and 20 normal breast tissues with other diseases which were obtained from Ho Chi Minh City Medical Hospital, Vietnam. The result indicated that the frequency of BRCA1 hypermethylation reached 82.1% in the cases (p<0.001). In addition, the DNA hypermethylation of this candidate gene increased the possibility to be breast cancer with high incidence via calculated odd ratios (p<0.05). In conclusion, hypermethylation of this candidate gene could be used as the promising biomarker application with Vietnamese breast cancer patients.

Characterization and functional inferences of a genome-wide DNA methylation profile in the loin (longissimus dorsi) muscle of swine

  • Kim, Woonsu;Park, Hyesun;Seo, Kang-Seok;Seo, Seongwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.3-12
    • /
    • 2018
  • Objective: DNA methylation plays a major role in regulating the expression of genes related to traits of economic interest (e.g., weight gain) in livestock animals. This study characterized and investigated the functional inferences of genome-wide DNA methylome in the loin (longissimus dorsi) muscle (LDM) of swine. Methods: A total of 8.99 Gb methylated DNA immunoprecipitation sequence data were obtained from LDM samples of eight Duroc pigs (four pairs of littermates). The reference pig genome was annotated with 78.5% of the raw reads. A total of 33,506 putative methylated regions (PMR) were identified from methylated regions that overlapped at least two samples. Results: Of these, only 3.1% were commonly observed in all eight samples. DNA methylation patterns between two littermates were as diverse as between unrelated individuals (p = 0.47), indicating that maternal genetic effects have little influence on the variation in DNA methylation of porcine LDM. The highest density of PMR was observed on chromosome 10. A major proportion (47.7%) of PMR was present in the repeat regions, followed by introns (21.5%). The highest conservation of PMR was found in CpG islands (12.1%). These results show an important role for DNA methylation in species- and tissue-specific regulation of gene expression. PMR were also significantly related to muscular cell development, cell-cell communication, cellular integrity and transport, and nutrient metabolism. Conclusion: This study indicated the biased distribution and functional role of DNA methylation in gene expression of porcine LDM. DNA methylation was related to cell development, cell-cell communication, cellular integrity and transport, and nutrient metabolism (e.g., insulin signaling pathways). Nutritional and environmental management may have a significant impact on the variation in DNA methylation of porcine LDM.

Characterization of the Methylation Status of Pax7 and Myogenic Regulator Factors in Cell Myogenic Differentiation

  • Chao, Zhe;Zheng, Xin-Li;Sun, Rui-Ping;Liu, Hai-Long;Huang, Li-Li;Cao, Zong-Xi;Deng, Chang-Yan;Wang, Feng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.1037-1043
    • /
    • 2016
  • Epigenetic processes in the development of skeletal muscle have been appreciated for over a decade. DNA methylation is a major epigenetic modification important for regulating gene expression and suppressing spurious transcription. Up to now, the importance of epigenetic marks in the regulation of Pax7 and myogenic regulatory factors (MRFs) expression is far less explored. In the present study, semi-quantitative the real-time polymerase chain reaction (RT-PCR) analyses showed MyoD and Myf5 were expressed in activated and quiescent C2C12 cells. MyoG was expressed in a later stage of myogenesis. Pax7 was weakly expressed in differentiated C2C12 cells. To further understand the regulation of expression of these genes, the DNA methylation status of Pax7, MyoD, and Myf5 was determined by bisulfite sequencing PCR. During the C2C12 myoblasts fusion process, the changes of promoter and exon 1 methylation of Pax7, MyoD, and Myf5 genes were observed. In addition, an inverse relationship of low methylation and high expression was found. These results suggest that DNA methylation may be an important mechanism regulating Pax7 and MRFs transcription in cell myogenic differentiation.