• Title/Summary/Keyword: Coverage Simulation

Search Result 466, Processing Time 0.03 seconds

Performance Enhancement using Hierarchical Modulation in Distributed Relaying Systems (분산 릴레이 시스템에서 계층적 변조를 이용한 성능 향상)

  • Choi, Du-Hwan;Kang, Dong-Kwan;Park, Jae-Hyun;Kim, Duk-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1A
    • /
    • pp.18-26
    • /
    • 2009
  • Various relay technologies have been considered in wireless communication systems to enlarge the coverage and to enhance the system throughput. However, the coverage is limited by its modulation levels and additional time slot(s) is required for relaying. In the paper, by applying the hierarchical modulation to two-relay systems, two-hop relaying can be implemented instead of three hops, and both throughput and coverage can be enhanced. Throughout simulation analysis, the coverage extension is evaluated for different modulation levels and the total throughput is increased by up to two times.

Two-Stage Base Station Sleeping Scheme for Green Cellular Networks

  • Yang, Juwo;Zhang, Xing;Wang, Wenbo
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.600-609
    • /
    • 2016
  • In this paper, we propose a two-stage base station (BS) sleeping scheme to save energy consumption in cellular networks. The BS sleeping mode is divided into a light sleeping stage and a deep sleeping stage according to whether there is a user in the BS's coverage. In the light sleeping stage, a BS will retain its coverage and frequently switch between the on state and the doze state according to the service characteristics. While in the deep sleeping stage analysis, the BS will shut down its coverage, and neighbor BSs will patch the coverage hole. Several closed-form formulas are derived to demonstrate the power consumption in each sleeping stage and the stage switching conditions are discussed to minimize the average power consumption. The average traffic delay caused by BS sleeping and the average deep sleeping rate under a given traffic load have also been studied. In addition, it is shown that BS sleeping is not always possible because of the limited quality of service (QoS) requirements. Simulation results show that the proposed scheme can effectively reduce the average BS power consumption, at the cost of some extra traffic delay. In summary, our proposed framework provides an essential understanding of the design of future green networks that aim to take full advantage of different stages of BS sleeping to obtain the best energy efficiency.

Rotational Wireless Video Sensor Networks with Obstacle Avoidance Capability for Improving Disaster Area Coverage

  • Bendimerad, Nawel;Kechar, Bouabdellah
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.509-527
    • /
    • 2015
  • Wireless Video Sensor Networks (WVSNs) have become a leading solution in many important applications, such as disaster recovery. By using WVSNs in disaster scenarios, the main goal is achieving a successful immediate response including search, location, and rescue operations. The achievement of such an objective in the presence of obstacles and the risk of sensor damage being caused by disasters is a challenging task. In this paper, we propose a fault tolerance model of WVSN for efficient post-disaster management in order to assist rescue and preparedness operations. To get an overview of the monitored area, we used video sensors with a rotation capability that enables them to switch to the best direction for getting better multimedia coverage of the disaster area, while minimizing the effect of occlusions. By constructing different cover sets based on the field of view redundancy, we can provide a robust fault tolerance to the network. We demonstrate by simulating the benefits of our proposal in terms of reliability and high coverage.

Throughput of Wi-Fi network based on Range-aware Transmission Coverage (가변 전송 커버리지 기반의 Wi-Fi 네트워크에서의 데이터 전송률)

  • Zhang, Jie;Lee, Goo Yeon;Kim, Hwa Jong
    • Journal of Digital Contents Society
    • /
    • v.14 no.3
    • /
    • pp.349-356
    • /
    • 2013
  • Products of Wi-Fi devices in recent years offer higher throughput and have longer signal coverage which also bring unnecessary signal interference to neighboring wireless networks, and result in decrease of network throughput. Signal interference is an inevitable problem because of the broadcast nature of wireless transmissions. However it could be optimized by reducing signal coverage of wireless devices. On the other hand, smaller signal coverage also means lower transmission power and lower data throughput. Therefore, in this paper, we analyze the relationship among signal strength, coverage and interference of Wi-Fi networks, and as a tradeoff between transmission power and data throughput, we propose a range-aware Wi-Fi network scheme which controls transmission power according to positions and RSSI(Received Signal Strength Indication) of Wi-Fi devices and analyze the efficiency of the proposed scheme by simulation.

Study on Coverage Analysis using Interference Cancellation in WCDMA System (WCDMA시스템에서 간섭제거기를 적용한 통화권 분석에 관한 연구)

  • 박태준;박재원;박용완
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.693-701
    • /
    • 2002
  • In this paper, we analyze the coverage of asynchronous IMT(International Mobile Telecommunication)-2000 reverse link with a MUD(Multi-User Detector) system. The MUD system is utilized to increase the coverage of reverse link. Also we have considered a propagation loss model and an interference effect. Because it is very difficult that we have calculated the interference accurately, so a fractional cell loading factor(F) is used in this paper. We make use of a MUD efficiency($\beta$) to analyze the performance; this efficiency is presented the MAI of reduction. A simulation utilizes Hata's model, we calculated the coverage according to voice and data services. In this paper, we have assumed that the frequency of carrier has 800 MHz or 1.9 GHz, and a bandwidth is decided 3.84 MHz. We have predicted the performance of actual system by the analysis of capacity and coverage.

Multicast Coverage Prediction in OFDM-Based SFN (OFDM 기반의 SFN 환경에서의 멀티캐스트 커버리지 예측)

  • Jung, Kyung-Goo;Park, Seung-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.205-214
    • /
    • 2011
  • In 3rd generation project partnership long term evolution, wireless multicast techniques which send the same data to multiple users under single frequency networks have attracted much attention. In the multicast system, the transmission mode needs to be selected for efficient data transfer while satisfying the multicast coverage requirement. To achieve this, users' channel state information (CSI) should be available at the transmitter. However, it requires too much uplink feedback resource if all the users are allowed to transmit their CSI at all the time. To solve this problem, in this paper, the multicast coverage prediction is suggested. In the proposed algorithm, each user measures its transition probabilities between the success and the fail state of the decoding. Then, it periodically transmits its CSI to the basestation. Using these feedbacks, the basestation can predict the multicast coverage. From the simulation results, we demonstrate that the proposed scheme can predict the multicast system coverage.

An Adaptive Coverage Control Algorithm for Throughput Improvement in OFDMA-based Relay Systems (OFDMA 기반 Relay 시스템에서 Throughput 성능 향상을 위한 적응적 커버리지 조절 기법)

  • Hyun, Myung-Reun;Hong, Dae-Hyoung;Lim, Jae-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9B
    • /
    • pp.876-882
    • /
    • 2009
  • In this paper, we propose a sub-cell coverage control algorithm for enhancement of the cell throughput in OFDMA based relay systems. Relay station (RS) is exploited for improved quality of the received signal in cellular communication systems, especially in shadow areas. However, since a RS requires additional radio resource consumption for the link between the base station (BS) and the RS, we have to carefully control the coverage areas if a mobile station (MS) is serviced via the BS or the RS considering the cell throughput. We consider radio resource reuse as well for the sub-cell coverage configuration by applying various reuse patterns between RSs. We also consider a time varying system by adaptively changing the threshold for coverage depending on the MSs' traffic in the cell. We initially determine the sub-cell coverage of the system depending on the ratio of received signal-interference-noise-ratio (SINR) of the MS from the BS and RSs, respectively. Then, the "sub-cell coverage threshold" varies based on the "effective transmitted bits per sub-channel" with time. Simulation result shows that the proposed "time varying coverage control algorithm" leads to throughput improvement compared to the fixed sub-cell coverage configuration.

Coverage Class Adaptation Schemes Considering Device Characteristics in a 3GPP Narrowband IoT System (3GPP 협대역 사물인터넷 시스템에서 단말의 특징을 고려한 커버리지 클래스 적응 기법)

  • Nam, Yujin;So, Jaewoo;Na, Minsoo;Choi, Changsoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.9
    • /
    • pp.1026-1037
    • /
    • 2016
  • 3rd Generation Partnership Project (3GPP) is the progressing standardization of the narrowband IoT (NB-IoT) system to support massive devices for the Internet of Things (IoT) services. The NB-IoT system uses a coverage class technique to increase the performance of the NB-IoT system while serving massive devices in very wide coverage area. A moving device can change the coverage class according to the distance or the channel state between the base station and the moving device. However, in the conventional NB-IoT standard, the performance of the NB-IoT system degrades because the coverage class is changed based on the fixed criterion. This paper proposes the coverage class adaptation schemes to increase the performance of the NB-IoT system by dynamically change the coverage class according to the location or the channel state of the device. Simulation results show that the proposed coverage class adaptation scheme decreases both the signaling overhead and the PDCCH decoding error rate in comparison with the conventional coverage class adaptation scheme in the 3GPP standard.

Methods for On-Line Determination of Truncation Point in Steady-State Simulation Outputs (안정상태 시뮬레이션 출력 데이터의 온라인 제거 시점 결정 방법)

  • 이영해
    • Journal of the Korea Society for Simulation
    • /
    • v.7 no.1
    • /
    • pp.27-37
    • /
    • 1998
  • Simulation output is generally stochastic and autocorrelated, and includes the initial condition bias. To exclude the bias, the determination of truncation point has been one of important issues for the steady-state simulation output analysis. In this paper, two methods are presented for detection of truncation point in order to estimate efficiently the steady-state measure of simulation output. They are based on the Euclidean distance equation, and the backpropagation algorithm in Neural Networks. The experimental results obtained by M/M/1 and M/M/2 show that the proposed methods are very promising with respect to coverage and relative bias. The methods could be used for the on-line analysis of simulation outputs.

  • PDF

Advertisement Coverage Analysis of Social Commerce Service with D2D Communications (D2D 통신을 이용한 소셜커머스 광고 커버리지 분석)

  • Kim, Jun-Seon;Lee, Howon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1547-1556
    • /
    • 2014
  • In this paper, we propose cost-effective device-to-device (D2D) advertisement scenario with properties of proximity and timeliness through the convergence of D2D communications and social commerce service. We numerically analyze advertisement dissemination effect of the proposed scenario according to the number of sectors, and demonstrate the performance of the normalized D2D coverage, the average number of D2D users, and the average D2D coverage per user via intensive simulations. We verify the accuracy of the results for our numerical analysis compared with the simulation results.