• Title/Summary/Keyword: Coverage Simulation

Search Result 466, Processing Time 0.026 seconds

Space-Frequency Block Coded Relay Transmission System for a Shadow Area (음영 지역을 위한 주파수 공간 블록 부호화 중계기 전송 시스템)

  • Won, Hui-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5776-5782
    • /
    • 2014
  • Relay-assisted wireless communication systems have been studied widely to cope with shadow areas and extend the cell coverage. This paper proposes a space-frequency (SF) block coded single carrier-frequency division multiple access (SC-FDMA) transmission system in a relaying multi-path shadow area and present the performance comparison of SC-FDMA systems based on the signal-to-noise power ratio (SNR) between a relay and a destination station. The performance of relaying SC-FDMA systems can be improved by applying SF block code to the recovered signals of relays before re-transmitting them. The simulation result showed that the SNR performance of the proposed SF block coded relaying SC-FDMA system was approximately 5 dB better than the SNR performance of the single-path relaying SC-FDMA system at a symbol error rate (SER) of $10^{-2}$.

Performance Analysis of Directional Communication for Wireless Ad Hoc Networks (무선 Ad hoc 네트워크의 지향성 통신 성능분석)

  • Lee, Sin-Kyu;Hong, Jin-Dae;Kim, Hyun-Tae;Ra, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2447-2458
    • /
    • 2009
  • Ad hoc wireless networks operate without any infrastructure where a node can be a source and a router at the same time. This indispensably requires high throughput and low delay performance throughout the wireless network coverage span, particularly under heavy traffic conditions. Recent research on using multiple antennas in beam-forming or multiplexing modes over a wireless channel has shown promising results in terms of high throughput and low delay. Directional antennas have shown to increase spatial reuse by allowing multiple transmitters and receivers to communicate using. directional beams as long as they do not significantly interfere with each other. However directional antenna performance asymptotically approaches the omni-directional performance in a high density ad hoc network. Simulation results in QualNet validate that average throughput and packet corruption ratio of directional antenna approach omni-directional performance. Moreover, we further highlight some important issues pertaining to the directional antenna performance in wireless networks.

An Efficient Broadcast Technique for Vehicular Networks

  • Ho, Ai Hua;Ho, Yao H.;Hua, Kien A.;Villafane, Roy;Chao, Han-Chieh
    • Journal of Information Processing Systems
    • /
    • v.7 no.2
    • /
    • pp.221-240
    • /
    • 2011
  • Vehicular networks are a promising application of mobile ad hoc networks. In this paper, we introduce an efficient broadcast technique, called CB-S (Cell Broadcast for Streets), for vehicular networks with occlusions such as skyscrapers. In this environment, the road network is fragmented into cells such that nodes in a cell can communicate with any node within a two cell distance. Each mobile node is equipped with a GPS (Global Positioning System) unit and a map of the cells. The cell map has information about the cells including their identifier and the coordinates of the upper-right and lower-left corner of each cell. CB-S has the following desirable property. Broadcast of a message is performed by rebroadcasting the message from every other cell in the terrain. This characteristic allows CB-S to achieve an efficient performance. Our simulation results indicate that messages always reach all nodes in the wireless network. This perfect coverage is achieved with minimal overhead. That is, CB-S uses a low number of nodes to disseminate the data packets as quickly as probabilistically possible. This efficiency gives it the advantage of low delay. To show these benefits, we give simulations results to compare CB-S with four other broadcast techniques. In practice, CB-S can be used for information dissemination, or to reduce the high cost of destination discovery in routing protocols. By also specify the radius of affected zone, CB-S is also more efficient when broadcast to a subset of the nodes is desirable.

Study on Error Correction Method for Advanced Terrestrial DMB (고품질 지상파 DMB를 위한 오류정정방식 연구)

  • Choi, Gyoo-Seok;Jeon, Byung-Chan;Park, In-Kyoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.69-75
    • /
    • 2010
  • Advanced T-DMB(Terrestial DMB )system which is a new portable mobile broadcasting system has been developed to increase data rate up to double of conventional T-DMB in same bandwidth while maintaining backward compatibility, using hierarchical modulation method. The Advanced T-DMB system realize high qualification of conventional T-DMB system by adding BPSK signal or QPSK signal as enhanced layer to existing DQPSK signal. The enhanced layer signal should be small enough to maintain backward compatibility and to minimize the coverage loss of existing T-DMB service area. But this causes the enhanced layer signal of Advanced T-DMB susceptible to fading effect in transmission channel. In this paper we applied the duo-binary turbo code which has powerful error correction capability to the enhanced layer signal for compensating channel distortion. And the computer simulation results about the performance of the duo-binary turbo code in Advanced T-DMB system are presented along with analysis comments.

Performance of Interference Cancellation for Cooperative Communication Systems with Maximum Likelihood Equalizer (최대 우도 등화기를 적용한 협력통신 시스템의 간섭 제거 성능)

  • Kim, Joo-Chan;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.7-12
    • /
    • 2010
  • In this paper, we analyze and simulate the performance of a cooperative communication system adopting a maximum likelihood (ML) equalizer. In wireless communication systems, cooperative communication schemes employing several relays can be applied for extending the communication coverage. It is assumed that both relays and user terminals can move. Therefore, coverages of two or more relays can overlap each other. If wanted and interfering signals are transmitted through the same channel and there are one terminal in the overlapped region, its performance is degraded due to interference. Hence, we use a ML equalizer for rejecting the effect of interfering signal and enhancing the communication system performance. The cooperative system performance is evaluated in terms of bit error probability. From the simulation results, it is demonstrated that the ML receiver shows good interference cancellation performance although its complexity is high.

Dynamic Density-based Inhibited Message Diffusion For Reducing Overhead In Delay Tolerant Network (DTN에서 오버헤드 감소를 위한 동적 밀도 기반 메시지 확산 억제 기법)

  • Dho, Yoon-hyung;Oh, Young-jun;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.120-122
    • /
    • 2015
  • In this paper, we proposed an algorithm of the unnecessary copied message inhibition using dynamic density what is called DDIM(Dynamic Density-based Inhibited Message diffusion) in DTNs(Delay Tolerant Networks). Existing DTN routing algorithms as Epidemic and Spray and Wait have some problems that occur large overhead in dense network due to the thoughtless message diffusion. Our proposed method, the DDIM, determines adjusted number of copied message through dynamic node density that is calculated using node's radio coverage and neighbor nodes in period time to solve message diffusion problem. It decrease overhead without losing message delivery ratio and increased latency through reducing message diffusion. In this paper, we compare delivery ratio, average latency and overhead of proposed algorithm, DDIM, and existing DTN routing algorithm and prove enhanced performance through simulation results.

  • PDF

UWB-based Class 4 Active RFID Protocol for USN Application (USN 응용을 위한 UWB 기반의 Class 4 능동형 RFID 프로토콜)

  • Hong, Sung-Hyun;Zhang, Hong;Chang, Kyung-Hi;Shin, Dong-Beom;Lee, Heyung-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.669-681
    • /
    • 2010
  • In this paper, we analyze the active RFID system ISO/IEC 18000-7. In order to apply to USN, which consists active RFID tags and sensor nodes, we propose UWB-based Class 4 active RFID protocol using active RFID relay tag as relay AP. To compare the performance between the existing ISO/IEC 18000-7 system and the proposed system, we introduce sensitivity-based measurement of achieved coverage and system efficiency. Also, we analyze the performance of the proposed system and compare it with that of the existing system through MCL analysis and SLS analysis.

Seamless Intra MR-BS Handover Based on IEEE802.16j (IEEE802.16j MR-BS내에서 끊김없는 핸드오버 기술)

  • Lee, Il-Shin;Yoo, Jae-Ho;Lee, Yoon-Ju;Kwon, Dong-Seung;Chung, Jae-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.381-390
    • /
    • 2009
  • In this paper, we propose a seamless intra MR-BS handover scheme based on IEEE802.16j transparent. The proposed scheme estimates the outage probability of mobile stations at a base station, finds the optimum relay user, and provides low handover latency for seamless data transmission. The simulation results show that the proposed scheme outperforms the conventional handover schemes in terms of the handover latency by 65% of conventional scheme. Moreover, the proposed scheme exhibits lower packet error rate compared with the conventional handover scheme when a mobile station moves to outside of the cell coverage and reduce both outage probability and the number of handover about 50% from setting forgetting factor and redundant threshold.

Mixed Deployment Methods for Reinforcing Connectivity of Sensor Networks (센서네트워크 연결성 강화를 위한 거점 노드 혼합 배치 기법 연구)

  • Heo, Nojeong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.169-174
    • /
    • 2014
  • Practical deployment methods for sensor nodes are demanding as applications using sensor nodes increase. In particular, node connectivity is crucial not only for the network longevity but also for direct impacts on sensing and data collection capability. Economic requirement at building sensor networks and often limited access for sensor fields due to hostile environment force to remain at random deployment from air. However, random deployment often result in lost connection problem and inefficient network topology issue due to node irregularity. In this paper, mixed deployment of key nodes that have better communication capability is proposed to support the original deployment into working in an efficient way. Node irregularity is improved by introducing mixed nodes and an efficient mixed node density is also analyzed. Simulation results show that the mixed deployment method has better performance than the existing deployment methods.

Data Pre-Caching Mechanism in NDN-based Drone Networks (NDN 기반 드론 네트워크의 데이터 사전 캐싱 기법)

  • Choi, Suho;Joe, Inwhee;Kim, Wontae
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1116-1121
    • /
    • 2019
  • Networking services based on the flying drones may cause many handover events because the coverage radius is narrower than that of the existing infrastructure, such as cellular networks. Therefore, it copes with frequent handover by pre-caching data to target network provider before handover using a content store. As a result of the simulation, it can be confirmed that the delay is lowered. This is because the data that was requested before the handover is delivered to the target drones, and the car that has completed the handover receives the data through the target drones. On the other hand, if the proposed method is not used, it can be confirmed that the delay is increased. This is because it can not cope with the path change due to the handover and re-sends the packet requesting the data.