• Title/Summary/Keyword: Coverage Simulation

Search Result 466, Processing Time 0.023 seconds

WCDMA Simulator Engine for 3G Wireless Network

  • Rashld Zainol Abidin Abdul;Ramaiah Karamchand Babu Atchitha
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.2 no.3
    • /
    • pp.36-47
    • /
    • 2003
  • Wideband Code Division Multiple Access (WCDMA) is one of the air interface techniques proposed for the third generation (3G) mobile communication system. WCDMA was selected because it fulfills the IMT-2000 requirements for higher data rate trans mission, support of multimedia capabilities and other flexible services due to its variable bit rates and larger bandwidth, improved capacity and coverage, efficient power control and support for advanced and improved detector structures. Performance evaluation of 3G wireless network through simulation plays an important role in the design and implementation of the actual system, aiding the wireless system designer by providing them the necessary performance conformance statistics prior to implementation. In accordance with this goal, a simulator engine was developed entirely on a MATLAB platform to emulate the behaviour of the WCDMA air interface for both the uplink and downlink in a real world fading mobile environment. This paper discuss the development of the simulator along with a brief description of its functionalities and user interface. The WCDMA air interface mode focused in this paper is in accordance to the 3GPPs frequency division duplex (FDD) mode and restricted to the physical layer description. Performance results for the selected cases for the downlink, uplink, varying mobile velocity and sampling rates are also provided.

  • PDF

A Sensing Data Collection Strategy in Software-Defined Mobile-Edge Vehicular Networks (SDMEVN) (소프트웨어 정의 모바일 에지 차량 네트워크(SDMEVN)의 센싱 데이터 수집 전략)

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.62-65
    • /
    • 2018
  • This paper comes out with the study on sensing data collection strategy in a Software-Defined Mobile Edge vehicular networking. The two cooperative data dissemination are Direct Vehicular cloud mode and edge cell trajectory prediction decision mode. In direct vehicular cloud, the vehicle observe its neighboring vehicles and sets up vehicular cloud for cooperative sensing data collection, the data collection output can be transmitted from vehicles participating in the cooperative sensing data collection computation to the vehicle on which the sensing data collection request originate through V2V communication. The vehicle on which computation originate will reassemble the computation out-put and send to the closest RSU. The SDMEVN (Software Defined Mobile Edge Vehicular Network) Controller determines how much effort the sensing data collection request requires and calculates the number of RSUs required to support coverage of one RSU to the other. We set up a simulation scenario based on realistic traffic and communication features and demonstrate the scalability of the proposed solution.

  • PDF

Performance Analysis of Dual-Hop Cooperative Transmission with Best Relay Selection in a Rayleigh Fading Channel

  • Nessa, Ahasanun;Lee, Woo-Yong;Kim, Yong-Sun;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7A
    • /
    • pp.530-539
    • /
    • 2009
  • Wireless Relaying is a promising solutions to overcome the channel impairments and provides high data rate coverage that appear for beyond 3G mobile communications. In this paper we present end to end BER performance of dual hop wireless communication systems equipped with multiple Decode and Forward relays over Rayleigh fading channel with the best relay selection. We compare the BER performance of the best relay with the BER performance of single relay. We select the best relay based on the end to end channel conditions. We further calculate the outage probability of the best relay. It is shown that the outage probability of the best relay is equivalent to the outage probability when all relays take part in the transmission. We apply Orthogonal Space Time Block coding(OSTBC) at the source terminal. Numerical and simulation results are presented to verify our analysis.

A Smart Setup for Craniospinal Irradiation

  • Peterson, Jennifer L.;Vallow, Laura A.;Kim, Siyong;Casale, Henry E.;Tzou, Katherine S.
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.230-236
    • /
    • 2013
  • Our purpose is to present a novel technique for delivering craniospinal irradiation in the supine position using a perfect match, field-in-field (FIF) intrafractional feathering, and simple forward-optimization technique. To achieve this purpose, computed tomography simulation was performed with patients in the supine position. Half-beam, blocked, opposed, lateral, cranial fields with a collimator rotation were matched to the divergence of the superior border of an upper-spinal field. Fixed field parameters were used, and the isocenter of the upper-spinal field was placed at the same source-to-axis distance (SAD), 20 cm inferior to the cranial isocenter. For a lower-spinal field, the isocenter was placed 40 cm inferior to the cranial isocenter at a constant SAD. Both gantry and couch rotations for the lower-spinal field were used to achieve perfect divergence match with the inferior border of the upper-spinal field. A FIF technique was used to feather the craniospinal and spinal-spinal junction daily by varying the match line over 2 cm. The dose throughout the target volume was modulated using the FIF simple forward optimization technique to obtain homogenous coverage. Daily, image-guided therapy was used to assure and verify the setup. This supine-position, perfect match craniospinal irradiation technique with FIF intrafractional feathering and dose modulation provides a simple and safe way to deliver treatment while minimizing dose inhomogeneity.

Interrelation Based Resource Allocation Scheme for Mobile Multimedia Networks (이동 멀티미디어 망을 위한 상호관계기반 자원 할당 방법)

  • Lee, Jong-Chan;Lee, Moon-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.8
    • /
    • pp.79-87
    • /
    • 2010
  • It is widely accepted that the coverage with high user densities in mobile multimedia environments can only be achieved with small cell such as micro- and pico-cell. If handover events occur during the transmission of multimedia, the efficient resource reservation and handover methods are necessary in order to maintain the same QoS of transmitted multimedia traffic because the QoS may be defected by some delay and information loss. In this paper, we propose a resource allocation method in the next generation mobile communication systems, in which the resource allocation process has a tight relation with call admission, call load, and packet scheduling. The simulation results show that our proposed method provides a excellent performance.

Energy-Efficient Resource Allocation for Heterogeneous Cognitive Radio Network based on Two-Tier Crossover Genetic Algorithm

  • Jiao, Yan;Joe, Inwhee
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.112-122
    • /
    • 2016
  • Cognitive radio (CR) is considered an attractive technology to deal with the spectrum scarcity problem. Multi-radio access technology (multi-RAT) can improve network capacity because data are transmitted by multiple RANs (radio access networks) concurrently. Thus, multi-RAT embedded in a cognitive radio network (CRN) is a promising paradigm for developing spectrum efficiency and network capacity in future wireless networks. In this study, we consider a new CRN model in which the primary user networks consist of heterogeneous primary users (PUs). Specifically, we focus on the energy-efficient resource allocation (EERA) problem for CR users with a special location coverage overlapping region in which heterogeneous PUs operate simultaneously via multi-RAT. We propose a two-tier crossover genetic algorithm-based search scheme to obtain an optimal solution in terms of the power and bandwidth. In addition, we introduce a radio environment map to manage the resource allocation and network synchronization. The simulation results show the proposed algorithm is stable and has faster convergence. Our proposal can significantly increase the energy efficiency.

Performance Analysis of a Cellular Networks Using Power Control Based Frequency Reuse Partitioning

  • Mohsini, Mustafa Habibu;Kim, Seung-Yeon;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.559-567
    • /
    • 2015
  • This paper focuses on evaluating the performance of a cellular network using power control based frequency reuse partitioning (FRP) in downlink (DL). In our work, in order to have the realistic environment, the spectral efficiency of the system is evaluated through traffic analysis, which most of the previous works did not consider. To further decrease the cell edge user's outage, the concept of power ratio is introduced and applied to the DL FRP based cellular network. In considering network topology, we first divide the cell coverage area into two regions, the inner and outer regions. We then allocate different sub-bands in the inner and outer regions of each cell. In the analysis, for each zone ratio, the performance of FRP system is evaluated for the given number of power ratios. We consider performance metrics such as call blocking probability, channel utilization, outage probability and effective throughput. The simulation results show that there is a significant improvement in the outage experienced by outer UEs with power control scheme compared to that with no power control scheme and an increase in overall system throughput.

A Cost-Efficient Energy Supply Sources Deployment Scheme in Wireless Sensor Networks (센서 네트워크 바용 절감을 위한 에너지 공급장치 배치 기법)

  • Choi, Yun-Bum;Kim, Yong-Ho;Kim, Jae-Joon;Kim, Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6B
    • /
    • pp.738-743
    • /
    • 2011
  • This paper considers the cost minimization issue for sensor network systems where sensor energy is supplied by remote energy sources wirelessly. Assuming symmetric structures of sensor nodes and energy sources, cost minimization problem is formulated, where the cost of sensor networks is represented as a function of sensor node density and energy source coverage. The optimal solution for the problem is provided and simulation results show that the proposal scheme achieves around 19% cost reduction in comparision to a conventional scheme.

Dynamic Downlink Resource Management of Femtocells Using Power Control in OFDMA Networks (OFDMA 펨토셀 환경에서 전력 제어를 이용한 동적 하향링크 자원관리 방법)

  • Lee, Sang-Tae;Ahn, Chun-Soo;Shin, Ji-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.339-347
    • /
    • 2012
  • Femtocells as home base station for indoor coverage extension and wideband data service, have been studied with significant interests. When femtocell is deployed, the existing cell structural of changes causes various technical problems. In this paper, we investigate the femto-macro cell interference mitigation in OFDMA system. We propose dynamic downlink resource management scheme which adjust the transmitted power of femtocell according to the strength of received macrocell signal and allocates subcarrier to femtocells in a dynamic manner. In this way, the interference between the macrocell users and femtocells is reduced. The simulation results show that proposed scheme enhances both macrocell and femtocell throughputs.

Transmit Power and Subcarrier Allocation Schemes for Downlink OFDM Systems with Multiple Relays (하향링크 다중 중계기 직교 주파수 분할 다중 시스템을 위한 송신 전력 및 부반송파 할당 기법)

  • Je, Hui-Won;Kim, Ik-Hyun;Lee, Kwang-Bok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3A
    • /
    • pp.281-289
    • /
    • 2009
  • Wireless relay attracts great attention as a core technology of next generation wireless communication systems since it enables reliable communications and extends cell coverage by supporting shadowed users. In this paper, we Propose transmit power and subcarrier allocation scheme for downlink OFDM systems with multiple decode and forward (DF) relays to increase data rate with fixed bit error rate (BER) and sum power constraint. In simulation results, average data rate based on the proposed schemes are evaluated and compared to that of the other schemes. It is also shown that the performance loss of the proposed scheme is negligible compared to the optimal scheme, while its computational complexity is reduced considerably.