• Title/Summary/Keyword: Cover Image

Search Result 717, Processing Time 0.02 seconds

SLC-off Image Correlation and Usability Evaluation by Gapfill Function (Gapfill 함수에 의한 SLC off 영상 보정 및 활용성 평가)

  • Park, Joon-Kyu;Kim, Min-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3692-3697
    • /
    • 2012
  • Landsat 7 ETM+ sensor is getting imageries in the SLC-off state since May 31, 2003 due to mechanical defect of SLC(Scan Line Corrector). Therefore additional correction works are required to use these imageries. In this study, Landsat 7 SLC-off imageries were corrected using Gapfill function and compared with Landsat 5 around the same time. Most of pixels in omitted areas due to SLC-off by producing SLC-off imageries and imageries without visual incompatibility could be achieved as there were not unnatural noises. Also, the corrected imageries were performed land cover classification which was compared with the classification result using reference image. To do this, it could be suggested the possibility of SLC-off imagery. Landsat 7 SLC-off corrected imageries will improve the difficult conditions to detect changes of large areas and be used to detect changes of large areas and classify imageries as well as to recover imagery loss arising regionally such as small scale cloud, etc.

Design and Fabrication of a 3-dimensional Diagnostic Ultrasonic Probe (3차원 입체 영상 진단용 초음파 프로브의 설계 및 제작)

  • Eun, Hong;Lee, Su-Sung;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.8
    • /
    • pp.766-771
    • /
    • 2002
  • In this study, we have developed a 3-dimensional diagnostic ultrasonic sector probe using a convex type ultrasonic probe with 128 active elements. The probe was made to operate at the center frequency of 4.5㎒ with the bandwidth of 66%. The driving part was designed to rotate the axis of the convex probe by means of a step motor equipped with reduction gears and spur gears attached to the motor so that the probe could enable us to acquire a series of 2-dimensional images to construct a 3-dimensional image. Acoustic cover of the probe was made of polymers to have the same radius of rotation as that of the convex probe. The controllability of the rotation angle and the structural stability of the probe were confirmed through experimental 3-dimensional images obtained using the developed 3-dimensional sector probe.

Applying Terra MODIS Satellite Image to Analysis of Current State of Upland Field (고랭지밭 현황 파악을 위한 Terra MODIS 위성영상 적용)

  • PARK, Min-Ji;CHOI, Young-Soon;SHIN, Hyung-Jin;LEE, Young-Joon;YU, Soon-Ju
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.1-11
    • /
    • 2017
  • The main source of water pollution in Doam Lake is turbid incoming water from upland fields in the upper watershed. The large scale, elevation, and slope of this region means that it is inaccessible, and it is difficult to collect information and update data. Field survey results show that there is a difference between classification of upland fields and grasslands in the cadastral data and land-cover map. In this study, MODIS NDVI was calculated from May 2000 to September 2015 in order to improve classification accuracy of upland fields.

Analysis of Temperature Change by Forest Growth for Mitigation of the Urban Heat Island (도시열섬 완화를 위한 녹지증가에 따른 온도변화 분석)

  • Yun, Hee Cheon;Kim, Min Gyu;Jung, Kap Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.2
    • /
    • pp.143-150
    • /
    • 2013
  • Recently, environmental issues such as climate warming, ozone layer depletion, reduction of tropical forests and desertification are emerging as global environmental problems beyond national problems. And international attention and effort have been carried out in many ways to solve these problems. In this study, the growth of green was calculated quantitatively using the technique of remote sensing and temperature change was figured out through temperature extraction in the city. The land-cover changes and thermal changes for research areas were analyzed using Landsat TM images on May 2002 and May 2009. Surface temperature distribution was calculated using spectral degree of brightness of Band 6 that was Landsat TM thermal infrared sensor to extract the ground surface temperature in the city. As a result of research, the area of urban green belt was increased by $2.87km^2$ and the ground surface temperature decreased by $0.6^{\circ}C{\sim}0.8^{\circ}C$ before and after tree planting projects. Henceforth, if the additional study about temperature of downtown is performed based on remote sensing and measurement data, it will contribute to solve the problems about the urban environment.

Terrace Fields Classification in North Korea Using MODIS Multi-temporal Image Data (MODIS 다중시기 영상을 이용한 북한 다락밭 분류)

  • Jeong, Seung Gyu;Park, Jonghoon;Park, Chong Hwa;Lee, Dong Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.1
    • /
    • pp.73-83
    • /
    • 2016
  • Forest degradation reduces ecosystem services provided by forest and could lead to change in composition of species. In North Korea, there has been significant forest degradation due to conversion of forest into terrace fields for food production and cut-down of forest for fuel woods. This study analyzed the phenological changes in North Korea, in terms of vegetation and moisture in soil and vegetation, from March to Octorber 2013, using MODIS (MODerate resolution Imaging Spectroradiometer) images and indexes including NDVI (Normalized Difference Vegetation Index), NDSI (Normalized Difference Soil Index), and NDWI (Normalized Difference Water Index). In addition, marginal farmland was derived using elevation data. Lastly, degraded terrace fields of 16 degree was analyzed using NDVI, NDSI, and NDWI indexes, and marginal farmland characteristics with slope variable. The accuracy value of land cover classification, which shows the difference between the observation and analyzed value, was 84.9% and Kappa value was 0.82. The highest accuracy value was from agricultural (paddy, field) and forest area. Terrace fields were easily identified using slope data form agricultural field. Use of NDVI, NDSI, and NDWI is more effective in distinguishing deforested terrace field from agricultural area. NDVI only shows vegetation difference whereas NDSI classifies soil moisture values and NDWI classifies abandoned agricultural fields based on moisture values. The method used in this study allowed more effective identification of deforested terrace fields, which visually illustrates forest degradation problem in North Korea.

Study on Landslide using GIS and Remote Sensing at the Kangneung Area(II)-Landslide Susceptibility Mapping and Cross-Validation using the Probability Technique (GIS 및 원격탐사를 이용한 2002년 강릉지역 태풍 루사로 인한 산사태 연구(II)-확률기법을 이용한 강릉지역 산사태 취약성도 작성 및 교차 검증)

  • Lee Saro;Lee Moung-Jin;Won Joong-Sun
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.521-532
    • /
    • 2004
  • The aim of this study is to evaluate the susceptibility of landslides at Kangneung area, Korea, using a Geographic Information System (GIS) and remote sensing. Landslide locations were identified from interpretation of satellite image and field surveys. The topographic, soil, forest, geologic, lineament and land cover data were collected, processed and constructed into a spatial database using GIS and remote sensing data. Using frequency ratio model which is one of the probability model, the relationships between landslides and related factors such as slope, aspect, curvature and type of topography, texture, material, drainage and effective thickness of soil, type, age, diameter and density of wood, lithology, distance from lineament and land cover were calculated as frequency ratios. Then, the frequency ratio were summed to calculate a landslide susceptibility indexes and the landslide susceptibility maps were generated using the indexes. The results of the analysis were verified and cross-validated using actual landslide location data. The verification results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations.

Estimation of Fractional Vegetation Cover in Sand Dunes Using Multi-spectral Images from Fixed-wing UAV

  • Choi, Seok Keun;Lee, Soung Ki;Jung, Sung Heuk;Choi, Jae Wan;Choi, Do Yoen;Chun, Sook Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.431-441
    • /
    • 2016
  • Since the use of UAV (Unmanned Aerial Vehicle) is convenient for the acquisition of data on broad or inaccessible regions, it is nowadays used to establish spatial information for various fields, such as the environment, ecosystem, forest, or for military purposes. In this study, the process of estimating FVC (Fractional Vegetation Cover), based on multi-spectral UAV, to overcome the limitations of conventional methods is suggested. Hence, we propose that the FVC map is generated by using multi-spectral imaging. First, two types of result classifications were obtained based on RF (Random Forest) using RGB images and NDVI (Normalized Difference Vegetation Index) with RGB images. Then, the result map was reclassified into vegetation and non-vegetation. Finally, an FVC map-based RF were generated by using pixel calculation and FVC map-based GI (Gutman and Ignatov) model were indirectly made by fixed parameters. The method of adding NDVI shows a relatively higher accuracy compared to that of adding only RGB, and in particular, the GI model shows a lower RMSE (Root Mean Square Error) with 0.182 than RF. In this regard, the availability of the GI model which uses only the values of NDVI is higher than that of RF whose accuracy varies according to the results of classification. Our results showed that the GI mode ensures the quality of the FVC if the NDVI maintained at a uniform level. This can be easily achieved by using a UAV, which can provide vegetation data to improve the estimation of FVC.

Analysis of the Land Surface Temperature by the Anthropogenic Heat in the Urban Area of Seoul: An Example in Application of Satellite Images (서울 도심지의 인본열에 의한 지표온도 분석: 위성영상 적용 사례)

  • Bhang, Kon-Joon;Park, Seok-Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.4
    • /
    • pp.397-407
    • /
    • 2010
  • The increase of the solar reradiation from urban areas relative to suburban due to urbanization heats up the air temperature in urban areas and this is called the urban heat island (UHI) effect. This UHI effect has a positive relationship with the degree of urbanization. Through the studies on UHI using the satellite imagery, the effect of the surface heat radiation was observed by verifying the relationship between the air temperature and the land cover types (surface materials such as urban, vegetation, etc.). In this study, however, the surface temperature distribution was studied in terms of land use types for Seoul. Using land use types, the surface temperature in urban areas such as residential, industrial, and commercial areas in Yeongdeungpo, highly packed with industrial and residential buildings, was maximum $6^{\circ}C$ higher than in the bare ground, which indicated that the surface temperature reflected the pattern of the human-consumed energy on the areas and showed that one of the important causes influencing the air temperature except the surface heat reradiation by the sun is the anthropogenic heat. Also, the effect due to the restoration of the Chunggae stream on UHI was investigated. The average surface temperature for the Chunggae stream was reduced about $0.4^{\circ}C$ after restoration. Considering that each satellite image pixel includes mixture of several materials such as concrete and asphalt, the average surface temperature might be much lower locally reducing UHI near the stream.

An analysis of year-to-year change of degraded forest land in Mongolia nature reserve Mt. Bogdkhan in Ulaanbaatar (몽골 울란바토르 복드한산 자연보호지역의 산림훼손지 경년변화 분석)

  • Ganzorig, Myagmar;Lee, Joon-Woo;Kweon, Hyeong-Keun;Choi, Sung-Min;Lee, Myeong-Kyo
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.3
    • /
    • pp.205-211
    • /
    • 2014
  • Focused on Mt. Bogdkhan nature reserve in Mongolia, this study was conducted as a fundamental research to discover a tendency and characteristics of forest damage and to draw up measures for proper plans of forest restoration through an analysis of year-to year change using satellite images. In specific, land cover mapping was conducted by using Landsat images from 1994 to 2011, and then year-to year change was analyzed to investigate the features of forest damage in Mt. Bogdkhan. The results showed that the whole area of a reservation in Mongolia in 2011 was about $416.89km^2$; among them, forest area was $167,87km^2$, accounting for about 40.3%, followed by bare patch and grassland area (58.6%) and urban dry area (1.1%). In particular, compared in 1994, the area of forest in 2011 has increased by $6.12km^2$; while bare patch and grassland area has decreased by $10.81km^2$. Primary causes of forest degradation occurred in Mt. Bogdkhan nature reserve included illegal logging for fuel, forest and grassland degradation caused by domestic animals grazing, man-made forest fire, and disaster caused by insect pest.

Classification of the damaged areas in the DMZ (demilitarized zone) using high-resolution satellite images and climate and topography data (고해상도 위성영상 및 기후·지형 데이터를 이용한 DMZ 불모지의 유형화)

  • Lee, Ah-Young;Shin, Hyun-Tak;Bak, Gi-Ppeum;Jung, Ji-Young;Sung, Chan-Yong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • In this study, we 1) identified the damaged areas along the south limit line (SLL) of the demilitarized zone (DMZ) by the military's 'DMZ barren land campaign', and 2) categorized the identified damaged areas into a few ecological types. Using high-resolution satellite images, we delineated the total damaged areas to be 1,183.2 ha, which accounted for 50.1% of the 100-m northern buffer regions from the SLL. Of the total damaged areas, 16% were severely damaged, i.e., they had been damaged until recently and so remained barren without vegetation cover. In other areas, the levels of damage were either moderate (59.9%) or slight (24.1%), due to natural succession that turned those areas to grassland or forest. Using satellite image-derived land cover maps and climatic and topographic data, we categorized the damaged areas into seven types: lowland grassland (19.8%), western lowland forest (21.4%), low-altitude forest (25.5%), mid-altitude forest (18.4%), high-altitude forest (6.8%), vicinity in east coast (7.9%), and waterbody (0.2%). These types can be used to identify proper measures to restore ecosystems in the DMZ for now and after Korean reunification.