• Title/Summary/Keyword: Cover Image

Search Result 717, Processing Time 0.026 seconds

An Implementation of Search System based on Natural Language Index Incorporating considering Image Characteristics (이미지 특성을 고려한 자연어 색인 기반의 검색시스템 구현)

  • Kim, Jung-Yee;Lee, Ki-Wook;Lee, Kang-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.337-343
    • /
    • 2006
  • The number of digital camera users is increasing rapidly and countless number of photos floats about on the internet especially through wide-spreading Cyworld and blogs. Though portraits cover a large percentage of those photos, because of the property rights, near entirety or such photos are unavailable for use by web-page producers, advertising companies, web-designers, and so on, who need a variety of portraits with differing expressions and characteristics. This study offers a search engine that incorporates image characteristics based on natural language index, which can provide a fast and reliable search result. It will create an opportunity for the digital photographers to mure easily sell their pictures and simultaneously provide the would-be users of the photos a better and easier way to find the pictures they are looking for. Once the search engine is realized, it will become possible to use not only the nouns as keywords and categories but also verbs in search of portraits revealing feelings, expressions, dressings, and other characteristics.

  • PDF

Analysis of a Spatial Distribution and Nutritional Status of Chlorophyll-a Concentration in the Jinyang Lake Using Landsat 8 Satellite Image (Landsat 8호 영상을 이용한 진양호의 클로로필 a 농도의 공간분포와 영양상태 분석)

  • Jang, Min Won;Cho, Hyun Kyung;Kim, Sang Min
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • The purpose of this study is to evaluate the nutritional status of Lake Jinyang using Landsat 8 satellite image band correlated with chlorophyll-a, which is also related to algae proliferation. We selected 20 Landsat 8 images dating from 2013 to 2017, taken close to water quality measurement date when the cloud cover was less than 20 %. Based on the results of the previous studies, analyzing the correlation between chlorophyll-a, and Landsat 8 satellite image band, we selected near infrared wavelength, band 5 which is closely related to the population of algae. The nutritional status was classified using the Aizaki trophic state index (TSIm). The results of the regression equation between band 5 and the observed chlorophyll-a data was used to calculate chlorophyll-a for the image data from 2013 to 2017. The concentration of chlorophyll-a ranged from 3 to $16.1mg/m^3$. To illustrate the spatial distribution of chlorophyll-a within the lake, the chlorophyll-a concentration was divided into five grades. The images on October 14, 2014 and April 10, 2016 showed relatively high value of chlorophyll-a, while January 18, 2015 and December 6, 2016 chlorophyll-a value were below 5. The images on October 14, 2014 and April 10, 2016 were rated as eutrophic status in most areas. The results of simulating water quality for the day when the water quality was not measured resulted to an approximate value for the Panmun station while the Naedong station needed some corrections.

Bridge Inspection and condition assessment using Unmanned Aerial Vehicles (UAVs): Major challenges and solutions from a practical perspective

  • Jung, Hyung-Jo;Lee, Jin-Hwan;Yoon, Sungsik;Kim, In-Ho
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.669-681
    • /
    • 2019
  • Bridge collapses may deliver a huge impact on our society in a very negative way. Out of many reasons why bridges collapse, poor maintenance is becoming a main contributing factor to many recent collapses. Furthermore, the aging of bridges is able to make the situation much worse. In order to prevent this unwanted event, it is indispensable to conduct continuous bridge monitoring and timely maintenance. Visual inspection is the most widely used method, but it is heavily dependent on the experience of the inspectors. It is also time-consuming, labor-intensive, costly, disruptive, and even unsafe for the inspectors. In order to address its limitations, in recent years increasing interests have been paid to the use of unmanned aerial vehicles (UAVs), which is expected to make the inspection process safer, faster and more cost-effective. In addition, it can cover the area where it is too hard to reach by inspectors. However, this strategy is still in a primitive stage because there are many things to be addressed for real implementation. In this paper, a typical procedure of bridge inspection using UAVs consisting of three phases (i.e., pre-inspection, inspection, and post-inspection phases) and the detailed tasks by phase are described. Also, three major challenges, which are related to a UAV's flight, image data acquisition, and damage identification, respectively, are identified from a practical perspective (e.g., localization of a UAV under the bridge, high-quality image capture, etc.) and their possible solutions are discussed by examining recently developed or currently developing techniques such as the graph-based localization algorithm, and the image quality assessment and enhancement strategy. In particular, deep learning based algorithms such as R-CNN and Mask R-CNN for classifying, localizing and quantifying several damage types (e.g., cracks, corrosion, spalling, efflorescence, etc.) in an automatic manner are discussed. This strategy is based on a huge amount of image data obtained from unmanned inspection equipment consisting of the UAV and imaging devices (vision and IR cameras).

Estimating vegetation index for outdoor free-range pig production using YOLO

  • Sang-Hyon Oh;Hee-Mun Park;Jin-Hyun Park
    • Journal of Animal Science and Technology
    • /
    • v.65 no.3
    • /
    • pp.638-651
    • /
    • 2023
  • The objective of this study was to quantitatively estimate the level of grazing area damage in outdoor free-range pig production using a Unmanned Aerial Vehicles (UAV) with an RGB image sensor. Ten corn field images were captured by a UAV over approximately two weeks, during which gestating sows were allowed to graze freely on the corn field measuring 100 × 50 m2. The images were corrected to a bird's-eye view, and then divided into 32 segments and sequentially inputted into the YOLOv4 detector to detect the corn images according to their condition. The 43 raw training images selected randomly out of 320 segmented images were flipped to create 86 images, and then these images were further augmented by rotating them in 5-degree increments to create a total of 6,192 images. The increased 6,192 images are further augmented by applying three random color transformations to each image, resulting in 24,768 datasets. The occupancy rate of corn in the field was estimated efficiently using You Only Look Once (YOLO). As of the first day of observation (day 2), it was evident that almost all the corn had disappeared by the ninth day. When grazing 20 sows in a 50 × 100 m2 cornfield (250 m2/sow), it appears that the animals should be rotated to other grazing areas to protect the cover crop after at least five days. In agricultural technology, most of the research using machine and deep learning is related to the detection of fruits and pests, and research on other application fields is needed. In addition, large-scale image data collected by experts in the field are required as training data to apply deep learning. If the data required for deep learning is insufficient, a large number of data augmentation is required.

Land Use Analysis of Road Circumstance using Remote Sensing and GIS (RS와 GIS를 이용한 도로주변의 토지이용분석)

  • Choi, Seok-Keun;Hwang, Eui-Jin;Park, Kyeong-Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.2
    • /
    • pp.133-140
    • /
    • 2007
  • In this study we did the monitor the change of a urban land coverage to forecast and to deal with various city problems according to urban development. The amount of change of a land coverage used the landsat satellite image and was calculated by analyzing the situation and the distribution aspect of land cover of the road circumstance by time series. We interpreted two images which are taken picture different time and calculated the amount of the area change through integration of the spatial analysis technique of remote sensing and GIS for this study. We could create the development model of the urban area by continuous analysis of satellite and geographic data.

Neural Network Based Land Cover Classification Technique of Satellite Image for Pollutant Load Estimation (신경망 기반의 오염부하량 산정을 위한 위성영상 토지피복 분류기법)

  • Park, Sang-Young;Ha, Sung-Ryong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.1-4
    • /
    • 2001
  • The classification performance of Artificial Neural Network (ANN) and RBF-NN was compared for Landsat TM image. The RBF-NN was validated for three unique landuse types (e.g. Mixed landuse area, Cultivated area, Urban area), different input band combinations and classification class. The bootstrap resampling technique was employed to estimate the confidence intervals and distribution for unit load, The pollutant generation was varied significantly according to the classification accuracy and percentile unit load applied. Especially in urban area, where mixed landuse is dominant, the difference of estimated pollutant load is largely varied.

  • PDF

수치변화탐지의 새로운 접근 - 기하거리분석법 -

  • Jeong, Seong-Hak
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.141-145
    • /
    • 1993
  • A new digital change detection algorithm, Euclidean Distance Analysis, was developed in an attempt to utilize the multi-band information in a selected band-comination, as an alternative to the conventional single-band analysis methods. To evaluate the relative performance of this new method, image differencing was applied. The better performance in change detection between the two algorithms investigated was provided by the Euclidean distance analysis. The new technique of Euclidean distance analysis holds promise for change detection, since it summarizes the multiple-band information on the cover-type changes and reduces the data dimensionality. It is suggested to further evaluate this new method, quantitatively, in the different environments. The use of different accuracy indices was also examined in the determining the optimal threshold level for each change image. As the standard measure for classification accuracy, the Kappa coefficient of agreement was used for evaluation.

  • PDF

APPLICATION AND CROSS-VALIDATION OF SPATIAL LOGISTIC MULTIPLE REGRESSION FOR LANDSLIDE SUSCEPTIBILITY ANALYSIS

  • LEE SARO
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.302-305
    • /
    • 2004
  • The aim of this study is to apply and crossvalidate a spatial logistic multiple-regression model at Boun, Korea, using a Geographic Information System (GIS). Landslide locations in the Boun area were identified by interpretation of aerial photographs and field surveys. Maps of the topography, soil type, forest cover, geology, and land-use were constructed from a spatial database. The factors that influence landslide occurrence, such as slope, aspect, and curvature of topography, were calculated from the topographic database. Texture, material, drainage, and effective soil thickness were extracted from the soil database, and type, diameter, and density of forest were extracted from the forest database. Lithology was extracted from the geological database and land-use was classified from the Landsat TM image satellite image. Landslide susceptibility was analyzed using landslide-occurrence factors by logistic multiple-regression methods. For validation and cross-validation, the result of the analysis was applied both to the study area, Boun, and another area, Youngin, Korea. The validation and cross-validation results showed satisfactory agreement between the susceptibility map and the existing data with respect to landslide locations. The GIS was used to analyze the vast amount of data efficiently, and statistical programs were used to maintain specificity and accuracy.

  • PDF

CROSS-VALIDATION OF ARTIFICIAL NEURAL NETWORK FOR LANDSLIDE SUSCEPTIBILITY ANALYSIS: A CASE STUDY OF KOREA

  • LEE SARO;LEE MOUNG-JIN;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.298-301
    • /
    • 2004
  • The aim of this study is to cross-validate of spatial probability model, artificial neural network at Boun, Korea, using a Geographic Information System (GIS). Landslide locations were identified in the Boun, Janghung and Youngin areas from interpretation of aerial photographs, field surveys, and maps of the topography, soil type, forest cover and land use were constructed to spatial data-sets. The factors that influence landslide occurrence, such as slope, aspect and curvature of topography, were calculated from the topographic database. Topographic type, texture, material, drainage and effective soil thickness were extracted from the soil database, and type, diameter, age and density of forest were extracted from the forest database. Lithology was extracted from the geological database, and land use was classified from the Landsat TM image satellite image. Landslide susceptibility was analyzed using the landslide­occurrence factors by artificial neural network model. For the validation and cross-validation, the result of the analysis was applied to each study areas. The validation and cross-validate results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations.

  • PDF

APPLICATION OF LOGISTIC REGRESS10N A MODEL FOR LANDSLIDE SUSCEPTIBILITY MAPPING USING GIS AT JANGHUNG, KOREA

  • Saro, Lee;Choi, Jae-Won;Yu, Young-Tae
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.64-64
    • /
    • 2003
  • The aim of this study is to apply and verify of logistic regression at Janghung, Korea, using a Geographic Information System (GIS). Landslide locations were identified in the study area from interpretation of IRS satellite images, field surveys, and maps of the topography, soil type, forest cover, geology and land use were constructed to spatial database. The factors that influence landslide occurrence, such as slope, aspect and curvature of topography were calculated from the topographic database.13${\times}$1ure, material, drainage and effective soil thickness were extracted from the soil database, and type, diameter and density of forest were extracted from the forest database. Land use was classified from the Landsat TM image satellite image. As each factor's ratings, the logistic regression coefficient were overlaid for landslide susceptibility mapping. Then the landslide susceptibility map was verified and compared using the existing landslide location. The results can be used to reduce hazards associated with landslides management and to plan land use and construction.

  • PDF