• Title/Summary/Keyword: Covalent Bond

Search Result 83, Processing Time 0.037 seconds

Analysis of Curriculum and Textbooks of Chemistry I and Survey of Chemistry Education Major Teachers' Conceptions Related to Electron Movement Model and Oxidation Number Change Model (전자 이동 모델과 산화수 변화 모델에 대한 화학 I 교육과정과 교과서 분석 및 화학교육전공 교사들의 인식 조사)

  • Kim, Kihyang;Paik, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.4
    • /
    • pp.204-210
    • /
    • 2017
  • In this study, we analyzed the descriptions of the electron movement model and the oxidation number change model presented in the 2009 revised curriculum and textbooks. We also investigated chemistry education major teachers' conceptions of limitations of each model. The electron movement model and oxidation number change model were presented in the curriculum and the textbooks. However, hybrid model was also presented which fail to grasp the limitation of each model. The hybrid model explains redox reactions of covalent bond compounds by electron movement model or even if it explains redox reactions by oxidation number change model, this explanations have the problem of confusing the virtual electron movement with the actual electron movement. A questionnaire and interviews were conducted to investigate chemistry education major teachers' perceptions of redox reactions. As results, many teachers did not recognize the limitations of each model and had difficulties to distinguish redox reactions from acid-base reactions because of the hybrid model.

스퍼터링 방법으로 성장시킨 나노구조의 Ga 농도 변화에 따른 형상 변화

  • Kim, Yeong-Lee;U, Chang-Ho;Jo, Hyeong-Gyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.23.1-23.1
    • /
    • 2009
  • ZnO is of great interest for various technological applications ranging from optoelectronics to chemical sensors because of its superior emission, electronic, and chemical properties. In addition, vertically well-aligned ZnO nanorods on large areas with good optical and structural properties are of special interest for the fabrication of electronic and optical nanodevices. To date, several approaches have been proposed for the growth of one-dimensional (1D) ZnO nanostructunres. Several groups have been reported the MOCVD growth of ZnO nanorods with no metal catalysts at $400^{\circ}C$, and fabricated a well-aligned ZnO nanorod array on a PLD prepared ZnO film by using a catalyst-free method. It has been suggested that the synthesis of ZnO nanowires using a template-less/surfactant-free aqueous method. However, despite being a well-established and cost-effective method of thin film deposition, the use of magnetrons puttering to grow ZnO nanorods has not been reported yet. Additionally,magnetron sputtering has the dvantage of producing highly oriented ZnO film sat a relatively low process temperature. Currently, more effort has been concentrated on the synthesis of 1D ZnO nanostructures doped with various metal elements (Al, In, Ga, etc.) to obtain nanostructures with high quality,improved emission properties, and high conductance in functional oxide semiconductors. Among these dopants, Ga-doped ZnO has demonstrated substantial advantages over Al-doped ZnO, including greater resistant to oxidation. Since the covalent bond length of Ga-O ($1.92\;{\AA}$) is nearly equal to that of Zn-O ($1.97\;{\AA}$), high electron mobility and low electrical resistivity are also expected in the Ga-doped ZnO. In this article, we report the successful growth of Ga-doped ZnO nanorods on c-Sapphire substrate without metal catalysts by magnetrons puttering and our investigations of their structural, optical, and field emission properties.

  • PDF

Amorphous Chalcogenide Solids Doped with Rare-Earth Element : Fluorescence Lifetimes and the Glass Structural Changes (희토류 원소 첨가 비정질 찰코지나이드 : 형광 수명과 유리 구조 변화의 관계)

  • Choi Yong Gyu
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.696-702
    • /
    • 2004
  • Lifetime of excited electronic states inside the 4f configuration of rare-earth elements embedded in chalcogenide glasses is very sensitive to medium-range structural changes of the host glasses. We have measured lifetimes of the 1.6$\mu\textrm{m}$ emission originating from Pr$\^$3+/ : ($^3$F$_3$, $^3$F$_4$)\longrightarrow$^3$H$_4$ transition in amorphous chalcogenide samples consisting of Ge, Sb, and Se elements. The measured lifetimes fumed out to have their maximum at the mean coordination number of -2.67, which arises accordingly from structural changes of the host glasses from 2 dimensional layers to 3 dimensional networks. This new finding supports that the so-called topological structure model together with chemically ordered network model is adequate to explain relationship between the emission properties of rare-earth elements and the medium-range structures of amorphous chalcogenide hosts with a large covalent bond nature. Thus, it is validated to predict site distribution and lifetime of rare-earth elements doped in chalcogenide glasses simply based on their mean coordination number.

A Study on the Improvement of Coloring in Dye-sensitized Solar Cell (염료감응형 태양전지의 착색 특성 개선 연구)

  • Seo, Hyun-Woong;Kim, Mi-Jeong;Son, Min-Kyu;Lee, Kyoung-Jun;Hong, Ji-Tae;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.297-300
    • /
    • 2007
  • In this study, we have attempted a new method to enhance the coloring of dye on the $TiO_2$ surface in the dye sensitized solar cell. In the conventional coloring process in a dye sensitized solar cells, dye is absorbed by the covalent bond between TiO2 and dye molecule while the photo-electrode coated with $TiO_2$ layer is soaked in dye solution for about 12-24 hours. But this process takes long time, so we have researched more effective and faster way than the conventional process by applying electric field. Three kinds of electric power such as direct voltage, alternating voltage and pulse voltage were applied to the transparent conducting oxide during the coloring process. As a result, we achieved improved power, fill factor and efficiency of dye-sensitized solar cell in case of applying direct voltage and pulse voltage. In contrast, alternating voltage tend to reduce the dye adsorption on the $TiO_2$ surface and hence the efficiency. We measured the absorption spectra of dye by UV-VIS spectrophotometer before and after soaking the $TiO_2$ in the dye and found no characteristic change in the dye was observed. In this study, we researched on shortening time of coloring process which spent much time in the whole process.

  • PDF

Characteristics of p-Xylene Adsorption using Functionalized Mesoporous Silica (관능기화 메조포러스 실리카를 이용한 파라자일렌 흡착 특성)

  • Kim, Sang-Hyoun;Park, Jonghoon;Kang, Seok-Tae;Chung, Jae-Woo;Kim, Soo-Hong;Cho, Yunchul;Lee, Chae-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.27-31
    • /
    • 2012
  • This study was designed to examine the feasibility of functionalized mesoporous silica as the adsorbent for benzene, toluene, ethylbenzene, and xylene isomers (BTEX) in groundwater. p-Xylene was used as the model compound of BTEX. A series of functionalized mesoporous silica with MCM-41 type of structure was synthesized using a co-condensation method. Monoamine, triamine, nitrile, phenyl, and octyl groups were functionalized to the mesoporous silica structure. Adsorption sites for p-Xylene in a functionalized mesoporous silica were Si-O-Si covalent bond, the surfactant, and the functional group. Octyl-functionalized mesoporous silica with stearyltrimethylammonium chloride as a surfactant showed the highest adsorption ability. The maximum xylene adsorption capacity of the octyl-functionalized mesoporous silica with stearyltrimethylammonium chloride based on Langmuir model was 4.17 mmol/g on $20^{\circ}C$, which was 2.9 times higher than that of MCM-41.

A study on the prediction of the mechanical properties of Zinc alloys using DV-Xα Molecular Orbital Method (DV-Xα분자궤도법을 이용한 Zn alloy의 기계적 성질 예측)

  • Na, H.S.;Kong, J.P.;Kim, Y.S.;Kang, C.Y.
    • Korean Journal of Materials Research
    • /
    • v.17 no.5
    • /
    • pp.250-255
    • /
    • 2007
  • The alloying effects on the electronic structures of Zinc are investigated using the relativistic $DV-X{\alpha}molecular$ orbital method in order to obtain useful information for alloy design. A new parameter which is the d obital energy level(Md) and the bonder order(Bo) of alloying elements in Zinc was introduced and used for prediction of the mechanical properties. The Md correlated with the atomic radius and the electronegativity of elements. The Bo is a measure of the strength of the covalent bond between M and X atoms. First-principles calculations of electronic structures were performed with a series of models composed of a MZn18 cluster and the electronic states were calculated by the discrete variational- $X{\alpha}method$ by using the program code SCAT. The central Zinc atom(M) in the cluster was replaced by various alloying elements. In this study energy level structures of pure Zinc and alloyed Zinc were calculated. From calculated results of energy level structures in MZn18 cluster, We found Md and Bo values for various elements of Zn. In this work, Md and Bo values correlated to the tensile strength for the Zn. These results will give some guide to design of zinc based alloys for high temperature applications and it is possible the excellent alloys design.

A Study on the Dyeing Characteristics in Cochineal Dyeing of Chitosan-treated Fabrics according to the Sequence of Mordanting Procedure (코치닐 염색시(染色時) Chitosan 처리포(處理布)의 매염순서(媒染順序)에 따른 차이(差異)에 관(關)하여)

  • Jeon, Dong-Won;Kim, Jong-Jun;Kwon, Hye-Jin
    • Journal of Fashion Business
    • /
    • v.7 no.5
    • /
    • pp.83-100
    • /
    • 2003
  • It has been known that the chitosan pre-treated fabrics can be dyed without the aid of mordanting process. It is due to the fact that chitosan treatment increases the dye uptake. However, the effect of chitosan on the dyeing mechanism has not been elucidated thus far. Following explanations have been presented regrading the action of the chitosan on the dyeing mechanisms: 1. Chitosan absorbs dyestuffs and facilitates dyeing since the chitosan itself has a good affinity toward dyestuffs. 2. Chitosan acts as a metallic mordant between the fiber molecule and dyestuff. 3. Fiber molecules and chitosan form a coordinate covalent bond. This study aims the quantitative investigation on the effect of the chitosan and the effect of sequence of the mordanting, pre-mordanting or post-mordanting, on the dyeing of the fabrics. Cotton fabrics and acylic fabrics were pre-treated with chitosan before dyeing with cochineal dyestuffs. Method 1: Fabrics were, firstly, mordanted with Al, Sn, Cu, and Fe; mordanted fabrics were, secondly, treated with chitosan; mordanted and chitosan-treated fabrics were, thirdly, dyed. Method 2: Fabrics were, firstly, treated with chitosan; chitosan-treated fabrics were, secondly, mordanted with Al, Sn, Cu, and Fe; these were dyed then. Method 2 gave distinguished specific color development with darker shade. Apart from this, chitosan-treated fabrics yielded darker shade compared to the pre-mordanted fabrics without chitosan-treatment.

Crystal Structure of Thiolase from Clostridium butyricum (Clostridium butyricum 유래 Thiolase의 입체구조규명 연구)

  • Kim, Eun-Jung;Kim, Kyung-Jin
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.353-358
    • /
    • 2016
  • Thiolase is an enzyme that catalyzes condensation reactions between two acetyl-CoA molecules to produce acetoacetyl-CoA. As thiolase catalyzes is the first reaction in the production of n-butanol, knowledge of the molecular and regulatory mechanism of the enzyme is crucial for synthesizing high-value biofuel. Thiolase from Clostridium butyricum (CbTHL) was expressed, purified, and crystallized. X-ray diffraction data were collected from the crystals, and the 3-dimentional structure of the enzyme was determined at 2.0 Å. The overall structure of thiolase was similar to that of type II biosynthetic thiolases, such as thiolase from C. acetobutylicum (CaTHL). The superposition of this structure with that of CaTHL complexed with CoA revealed the residues that comprise the catalytic and substrate binding sites of CbTHL. The catalytic site of CbTHL contains three conserved residues, Cys88, His349, and Cys379, which may function as a covalent nucleophile, general base, and second nucleophile, respectively. For substrate binding, the way in which CbTHL stabilized the ADP moiety of CoA was unlike that of other thiolases, whereas the stabilization of β-mercaptoethyamine and pantothenic acid moieties of CoA was quite similar to that of other enzymes. The most interesting observation in the CbTHL structure was that the enzyme was regulated through redox-switch modulation, using a reversible disulfide bond.

A Study on the Synthesis of Eugenolchitosan and Safrolechitosan (Eugenol과 safrole을 부가한 chitosan 유도체 합성)

  • Kim, Je-Jung;Jung, Byung-Ok;Chang, Pahn-Shick;Park, Dong-Ki
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.398-402
    • /
    • 2004
  • Safrolechitosan (SaCs) and eugenolchitosan (EuCs) were synthesized and characterized to increase water solubility and functionality of chitosan. Product impurities were removed by Soxhlet apparatus using methanol to obtain final product with high purity. Using Ubbelohde viscometer, molecular weights of chitosan, EuCs, and SaCs were determined as $1.2{\times}10^{5}\;Da,\;7.8{\times}10^{5},\;and\;7.5{\times}10^{5}\;Da,\;respectively$. IR spectrum of SaCs revealed chemical shift of amide II band ($1,553cm^{-1}$) of chitosan grafted by safrole caused by generation of covalent bond between primary amino of chitosan and double bond of safrole. Due to graft reaction of safrole onto chitosan, vinyl bands ($1,611\;and\;1,442cm^{-1}$) of safrole disappeared. In graft reaction of eugenol onto chitosan, shift of amide II band ($1,553cm^{-1}$) and disappearance of vinyl band were observed. On $^{1}H-NMR$ spectrum of EuCs, $H_{2}C=CH-$ peak in eugenol (monomer) disappeared, whereas $-H_{2}C-CH_{2}-$ peak appeared. Above results indicate safrole and eugenol were successfully grafted onto chitosan.

Electrokinetic Studies on Nylon and Wool/Acid Dye System (나일론과 양모/산성염료계에 대한 계면동전위적 연구)

  • 박병기;김진우;김찬영
    • Textile Coloration and Finishing
    • /
    • v.1 no.1
    • /
    • pp.19-25
    • /
    • 1989
  • In past, dye diffusion and dyeing rate in fibers have been emphasized in dyeing phenomena. However, in the light of the properties of colloids in the surface of disperse phase and dispersion, there exist specific characters such as adsorption or electric double layer, which seems to play important roles in determining the physiochemical properties in the dyeing system. Electrostatic bonding, hydrogen bonding and Van der Waals adsorption are common in dyeing as well as covalent bonding. Particularly, electrostatic bonding is premised on the existance of ionic radicals in fibers. The present study was aimed to clarify the electrokinetic phenomena of dyeing through the role of electric double layer by ion in amphoteric fibers with different ionic effects under different pH. Spectrophotometric analysis method was used to compare dyeing condition of surface, which can be detected by electrokinetic phenomena and the inner of fibers after deceleration of dyed fibers. Nylon and wool, the typical amphoteric fibers were dyed with monoazo acid dyes such as C.I. Acid Orange 20, and C.I. Acid Orange 10. Various combinations were prepared by combining pH, temperature and dye concentration, in order to generate streaming electric potential which were measured by microvolt meter and specific conductivity meter. The results were transformed to zeta potential by Helmholtz-Smoluchowski formular and to surface electric charge density by Suzawa formular, surface dye amount, and effective surface area of fibers. The amount of dyes of inner fibers were also measured by the Lambert-Beer’s law. The main results obtained are as follows. 1. By measuring zeta pontential, it was possible to detect the dyeing mechanism, surface charge density, surface dye amount and effective surface area concerning dye adsorption of the amphoteric fibers. 2. Zeta pontential increases in negative at low pH and high dye concentration in the process of dyeing. This implied that there existed ionic bond formation in the dyeing mechanism between acid dyes and amphoteric fibers. 3. Dibasic acid dye had little changing rate in zeta potential due to the difference in solubility of dye and in number of dissociated ions per dye molecule to bond with amino radicals of amphoteric fibers. The dye adsorption of mono basic acid dye was higher than that of dibasic acid dye. 4. The effective surface areas concerning dyeing were $6.3E+05\;cm^2/g$ in nylon, $1.6E+07\;cm^2/g$ in wool fiber being higher order of wool then nylon.

  • PDF