Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.3.353

Crystal Structure of Thiolase from Clostridium butyricum  

Kim, Eun-Jung (School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University)
Kim, Kyung-Jin (School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University)
Publication Information
Journal of Life Science / v.26, no.3, 2016 , pp. 353-358 More about this Journal
Abstract
Thiolase is an enzyme that catalyzes condensation reactions between two acetyl-CoA molecules to produce acetoacetyl-CoA. As thiolase catalyzes is the first reaction in the production of n-butanol, knowledge of the molecular and regulatory mechanism of the enzyme is crucial for synthesizing high-value biofuel. Thiolase from Clostridium butyricum (CbTHL) was expressed, purified, and crystallized. X-ray diffraction data were collected from the crystals, and the 3-dimentional structure of the enzyme was determined at 2.0 Å. The overall structure of thiolase was similar to that of type II biosynthetic thiolases, such as thiolase from C. acetobutylicum (CaTHL). The superposition of this structure with that of CaTHL complexed with CoA revealed the residues that comprise the catalytic and substrate binding sites of CbTHL. The catalytic site of CbTHL contains three conserved residues, Cys88, His349, and Cys379, which may function as a covalent nucleophile, general base, and second nucleophile, respectively. For substrate binding, the way in which CbTHL stabilized the ADP moiety of CoA was unlike that of other thiolases, whereas the stabilization of β-mercaptoethyamine and pantothenic acid moieties of CoA was quite similar to that of other enzymes. The most interesting observation in the CbTHL structure was that the enzyme was regulated through redox-switch modulation, using a reversible disulfide bond.
Keywords
Clostridium butyricum; disulfide bond; redox-switch modulation; structure; thiolase;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Atsumi, S., Hanai, T. and Liao, J. C. 2008. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86-89.   DOI
2 Durre, P. 2007. Biobutanol: an attractive biofuel. Biotechnol. J. 2, 1525-1534.   DOI
3 Durre, P. 2008. Fermentative butanol production: bulk chemical and biofuel. Ann. N.Y. Acad. Sci. 1125, 353-362.   DOI
4 Emsley, P. and Cowtan, K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126-2132.   DOI
5 Ezeji, T., Milne, C., Price, N. D. and Blaschek, H. P. 2010. Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl. Microbiol. Biotechnol. 85, 1697-1712.   DOI
6 Felnagle, E. A., Chaubey, A., Noey, E. L., Houk, K. N. and Liao, J. C. 2012. Engineering synthetic recursive pathways to generate non-natural small molecules. Nat. Chem. Biol. 8, 518-526.   DOI
7 Inui, M., Suda, M., Kimura, S., Yasuda, K., Suzuki, H., Toda, H., Yamamoto, S., Okino, S., Suzuki, N. and Yukawa, H. 2008. Expression of clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl. Microbiol. Biotechnol. 77, 1305-1316   DOI
8 Jones, D. T. and Woods, D. R. 1986. Acetone-butanol fermentation revisited. Microbiol. Rev. 50, 484-524.
9 Kim, E. J., Kim, J., Ahn, J. W., Kim, Y. J., Chang, J. H. and Kim, K. J. 2014. Crystal structure of (S)-3-Hydroxybutyryl- CoA dehydrogenase from clostridium butyricum and its mutations that enhance reaction kinetics. J. Microbiol. Biotechnol. 24, 1636-1643.   DOI
10 Kim, E. J., Kim, Y. J. and Kim, K. J. 2014. Structural insights into substrate specificity of crotonase from the n-butanol producing bacterium clostridium acetobutylicum. Biochem. Biophys. Res. Commun. 451, 431-435.   DOI
11 Kim, E. J., Son, H. F., Kim, S., Ahn, J. W. and Kim, K. J. 2014. Crystal structure and biochemical characterization of beta-keto thiolase B from polyhydroxyalkanoate-producing bacterium Ralstonia eutropha H16. Biochem. Biophys. Res. Commun. 444, 365-369.   DOI
12 Kim, E. J. and Kim, K. J. 2014. Crystal structure and biochemical characterization of PhaA from Ralstonia eutropha, a polyhydroxyalkanoate-producing bacterium. Biochem. Biophys. Res. Commun. 452, 124-129.   DOI
13 Kim, S., Jang, Y. S., Ha, S. C., Ahn, J. W., Kim, E. J., Lim, J. H., Cho, C., Ryu, Y. S., Lee, S. K., Lee, S. Y. and Kim, K. J. 2015. Redox-switch regulatory mechanism of thiolase from clostridium acetobutylicum. Nat. Commun. 6, 8410.   DOI
14 Kursula, P., Sikkilä, H., Fukao, T., Kondo, N. and Wierenga, R. K. 2005. High resolution crystal structures of human cytosolic thiolase (CT): acomparison of the active sites of human CT, bacterial thiolase, andbacterial KAS I. J. Mol. Biol. 347, 189-201.   DOI
15 Mitchell, W. J. 1998. Physiology of carbohydrate to solvent conversion by clostridia. Adv. Microb. Physiol. 39, 31-130.
16 Lee, S. K., Chou, H., Ham, T. S., Lee, T. S. and Keasling, J. D. 2008. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr. Opin. Biotechnol. 19, 556-563.   DOI
17 Lee, S. Y., Park, J. H., Jang, S. H., Nielsen, L. K., Kim, J. and Jung, K. S. 2008. Fermentative butanol production by clostridia. Biotechnol. Bioeng. 101, 209-228.   DOI
18 Matthews, B. W. 1968. Solvent content of protein crystals. J. Mol. Biol. 33, 491-497.   DOI
19 Mathieu, M., Zeelen, J. P., Pauptit, R. A., Erdmann, R., Kunau, W. H. and Wierenga, R. K. 1994. The 2.8 A crystal structure of peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: a five-layered alpha beta alpha beta alpha structure constructed from two core domains of identical topology. Structure 2, 797-808.   DOI
20 Mathieu, M., Zeelen, J. P., Pauptit, R. A., Erdmann, R., Kunau, W. H. and Wierenga, R. K. 1997. The 1.8 A crystal structure of the dimeric peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: implications for substrate binding and reaction mechanism. J. Mol. Biol. 273, 714-728.   DOI
21 Meriläinen, G., Poikela, V., Kursula, P. and Wierenga, R. K. 2009. The thiolase reaction mechanism: the importance of Asn316 and His348 forstabilizing the enolate intermediate of the Claisen condensation. Biochemistry 48, 11011-11025.   DOI
22 Meriläinen, G., Schmitz, W., Wierenga, R. K. and Kursula, P. 2008. The sulfur atoms of the substrate CoA and the catalytic cysteine are required for a productivemode of substrate binding in bacterial biosynthetic thiolase, a thioester dependent enzyme. FEBS J. 275, 6136-6148.   DOI
23 Nielsen, D. R., Leonard, E., Yoon, S. H., Tseng, H. C., Yuan, C. and Prather, K. L. 2009. Engineering alternative butanol production platforms in heterologous bacteria. Metab. Eng. 11, 262-273.   DOI
24 Modis, Y. and Wierenga, R. K. 1999. A biosynthetic thiolase in complex with areaction intermediate: the crystal structure provides new insights into the catalytic mechanism. Structure 7, 1279-1290.   DOI
25 Modis, Y. and Wierenga, R. K. 2000. Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase. J. Mol. Biol. 297, 1171-1182.   DOI
26 Murshudov, G. N., Vagin, A. A. and Dodson, E. J. 1997. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240-255.   DOI
27 Otwinowski, Z. and Minor, W. 1997. Processing of X-ray diffraction data. Methods Enzymo. 276, 307-326.   DOI
28 Papoutsakis, E. T. 2008. Engineering solventogenic clostridia. Curr.Opin. Biotechnol. 19, 420-429.   DOI
29 Steen, E. J., Chan, R., Prasad, N., Myers, S., Petzold, C. J., Redding, A., Ouellet, M. and Keasling, J. D. 2008. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb. Cell Fact. 7, 36.   DOI
30 Vagin, A. and Teplyakov, A. 2010. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22-25.   DOI