• Title/Summary/Keyword: Coupling stiffness

Search Result 284, Processing Time 0.025 seconds

Analysis on the Measured Natural Frequencies Due to the Structure-Exciter Interaction (구조물-가진기 상호작용에 의한 공진주파수 변동에 대한 해석)

  • Han, Sang-Bo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2108-2117
    • /
    • 1996
  • The purpose of this paper is to investigate the influence of the exciter attached for the measurement of natural frequencies when extracting the frequency response functions of the test structure in experimental modal analysis. The procedure is first to model the attached exciter as an additional degree of freedom system and next to verify the suggested model by experimentally extracting the natural frequencies of the test structure with various values of exciter mass, stinger stiffness and attachment position of the exciter on the test structure. It is concluded that as additional degree of freedom system which includes the natural frequency of the exciter itself and axial stiffness of stinger should be considered to quantatively define the coupling effects of structure-exciter interaction on the measured natural frequencies. It is not the mass of the exciter itself but the coupling effect of the additional degree of freedom mass-spring system consisting of exciter body and armature coil that characterizes the natural frequency deviation. Therefore, when the natural frequency of this additional mass-spring system is outside of the test frequency range, the coupling effect of structure-exciter interaction can be minimized.

Torsional Vibration Analysis for Engine Shafting of Fishing Vessel with PTO System and Nonlinear Elastic Coupling (PTO시스템과 비선형 탄성커플링을 갖는 어선용 기관축계의 비틀림 진동해석)

  • Choi, Myung-Soo;Kim, Won-Rae;Moon, Deok-Hong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.3
    • /
    • pp.232-243
    • /
    • 2004
  • After studying the composition about the torsional shafting of main engine for fishing vessel with Power Take Off (PTO) System, the authors made a computer program using the transfer stiffness coefficient method (TSCM) for analyzing torsional vibration about the shafting with PTO system and nonlinear elastic coupling. The torsional shafting of main engine was separated by 3 types according to the connecting. The torsional shafting of main engine was separated by 3 types according to the connecting condition of main engine with propeller or the PTO system or both of them. In this paper, the change of natural frequencies and natural modes according to connecting condition of torsional shafting and nonlinear elastic coupling were analyzed. The accuracy of the TSCM was confirmed by comparing with the computational results of the Finite Element Method.

The Structural Behavior of Reinforced Concrete R/C Couplinging Beams in Wall-Dominant System (벽식구조 아파트에서 전단벽 연결보의 구조적거동)

  • 장극관;천영수;서대원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.411-416
    • /
    • 2001
  • Preliminary experimental results are reported on the response of reversed T type linking reinforced concrete shear wall. Different layouts of coupling beams were tested and stiffness degradation and energy dissipation of coupling beams were evaluated. Diagonally reinforced coupling beams with slab showed larger ductility and larger amount of energy absorption to be attained compared with conventionally reinforced concrete coupled beams.

  • PDF

Stiffiness Analysis and Optimization of Strand and Wire Rope (스트랜드와 와이어 로프의 강성해석 및 최적화)

  • Heo, Seong-Pil;Yang, Won-Ho;Seong, Gi-Deuk;Jo, Myeong-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1246-1253
    • /
    • 2000
  • Wire ropes are widely used in cable car, suspension bridge and elevator, etc. and there has been a growing need for ropes of large diameter. The theoretical procedures to obtain the stiffness coefficients of wire ropes, using previously reported theory, are programmed and the verification of the program is made. The effects of lay angle on the stiffness of strand are researched and comparisons on stiffness of rope are made according to the lay type. Axial stiffness optimization problems with coupling and torsional stiffness constraints are formulated and the effects of constraints on other stiffness coefficients on axial stiffness optimization are investigated.

Effect of rigid connection to an asymmetric building on the random seismic response

  • Taleshian, Hamed Ahmadi;Roshan, Alireza Mirzagoltabar;Amiri, Javad Vaseghi
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.183-200
    • /
    • 2020
  • Connection of adjacent buildings with stiff links is an efficient approach for seismic pounding mitigation. However, use of highly rigid links might alter the torsional response in asymmetric plans and although this was mentioned in the literature, no quantitative study has been done before to investigate the condition numerically. In this paper, the effect of rigid coupling on the elastic lateral-torsional response of two adjacent one-story column-type buildings has been studied by comparison to uncoupled structures. Three cases are considered, including two similar asymmetric structures, two adjacent asymmetric structures with different dynamic properties and a symmetric system adjacent to an adjacent asymmetric one. After an acceptable validation against the actual earthquake, the traditional random vibration method has been utilized for dynamic analysis under Ideal white noise input. Results demonstrate that rigid coupling may increase or decrease the rotational response, depending on eccentricities, torsional-to-lateral stiffness ratios and relative uncoupled lateral stiffness of adjacent buildings. Results are also discussed for the case of using identical cross section for all columns supporting eachplan. In contrast to symmetric systems, base shear increase in the stiffer building may be avoided when the buildings lateral stiffness ratio is less than 2. However, the eccentricity increases the rotation of the plans for high rotational stiffness of the buildings.

Dynamic Characteristics of torsion for Marine Propulsion Shafting system with Elastic Rubber Coupling (고무 탄성커플링을 갖는 선박 추진용 축계 비틀림의 동특성)

  • 이돈출;김상환;유정대
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.742-748
    • /
    • 2003
  • As for marine propulsion shafting system using 4 stroke diesel engine, it is common to apply reduction gear box between diesel engine and shafting with a view of increasing mechanical efficiency, which inevitably require elastic coupling due to avoid chattering and hammering inside of gear box. In this study, optimum method of rectifying propulsion shafting system in case of 750ton fishing vessel specially in a view of torsional vibration, is theoretically studied. After exchange of diesel engine and gear box, analysis result of torsional vibration get worse and so some countermeasure are needed. The elastic coupling is modified from present block type rubber coupling showing relatively high torsional stiffness to rubber coupling with two series elements directly connected. The vibration measurement using two laser torsion meters was done during sea trial, whose results are compared to those of calculation and verified.

  • PDF

Seismic behavior of strengthened reinforced concrete coupling beams by bolted steel plates, Part 1: Experimental study

  • Zhu, Y.;Su, R.K.L.;Zhou, F.L.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.149-172
    • /
    • 2007
  • An experimental study of five full-scale coupling beam specimens has been conducted to investigate the seismic behavior of strengthened RC coupling beams by bolted side steel plates using a reversed cyclic loading procedure. The strengthened coupling beams are fabricated with different plate thicknesses and shear connector arrangements to study their respective effects on load-carrying capacity, strength retention, stiffness degradation, deformation capacity, and energy dissipation ability. The study revealed that putting shear connectors along the span of coupling beams produces no significant improvement to the structural performance of the strengthened beams. Translational and rotational partial interactions of the shear connectors that would weaken the load-carrying capacity of the steel plates were observed and measured. The hierarchy of failure of concrete, steel plates, and shear connectors was identified. Furthermore, detailed effects of plate buckling and various arrangements of shear connectors on the post-peak behavior of the strengthened beams are discussed.

A hybrid method for dynamic stiffness identification of bearing joint of high speed spindles

  • Zhao, Yongsheng;Zhang, Bingbing;An, Guoping;Liu, Zhifeng;Cai, Ligang
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.141-159
    • /
    • 2016
  • Bearing joint dynamic parameter identification is crucial in modeling the high speed spindles for machining centers used to predict the stability and natural frequencies of high speed spindles. In this paper, a hybrid method is proposed to identify the dynamic stiffness of bearing joint for the high speed spindles. The hybrid method refers to the analytical approach and experimental method. The support stiffness of spindle shaft can be obtained by adopting receptance coupling substructure analysis method, which consists of series connected bearing and joint stiffness. The bearing stiffness is calculated based on the Hertz contact theory. According to the proposed series stiffness equation, the stiffness of bearing joint can be separated from the composite stiffness. Then, one can obtain the bearing joint stiffness fitting formulas and its variation law under different preload. An experimental set-up with variable preload spindle is developed and the experiment is provided for the validation of presented bearing joint stiffness identification method. The results show that the bearing joint significantly cuts down the support stiffness of the spindles, which can seriously affects the dynamic characteristic of the high speed spindles.

Seismic behavior of fiber reinforced cementitious composites coupling beams with conventional reinforcement

  • Liang, Xingwen;Xing, Pengtao
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.261-271
    • /
    • 2018
  • Fiber reinforced cementitious composites (FRCC) materials that exhibit strain-hardening and multiple cracking properties under tension were recently developed as innovative building materials for construction. This study aims at exploring the use of FRCC on the seismic performance of coupling beams with conventional reinforcement. Experimental tests were conducted on seven FRCC precast coupling beams with small span-to-depth ratios and one ordinary concrete coupling beam for comparison. The crack and failure modes of the specimens under the low cycle reversed loading were observed, and the hysteretic characteristics, deformation capacity, energy dissipation capacity and stiffness degradation were also investigated. The results show that the FRCC coupling beams have good ductility and energy dissipation capacities compared with the ordinary concrete coupling beam. As the confinement stirrups and span-to-depth ratio increase, the deformation capacity and energy dissipation capacity of coupling beams can be improved significantly. Finally, based on the experimental analysis and shear mechanism, a formula for the shear capacity of the coupling beams with small span-to-depth ratios was also presented, and the calculated results agreed well with the experimental results.

Nonlinear Dynamic Response of Well-Slab Apartment Building Considering The Behavior of Coupling Elements (벽식 아파트 구조에서 연결부재의 거동특성을 고려한 비선형 동적 응답)

  • 김기현;장극관;서대원;천영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.437-442
    • /
    • 2002
  • The purpose of this study is to investigate nonlinear behavior and estimate ultimate resistance of the wall structure against seismic loading. Experimental data for RC coupling elements are used for specifying the strength deterioration and stiffness degradation factor of hysteretic model. Modified coupling element models are used in the push over analysis and time history analysis. In the time history analysis, three earthquake waves are used in the analysis and their peak ground accelerations are changed to be 0.2g. The conclusions of this study are as follows : (1) In the push over analysis, yielding of coupling elements occurred at lower story with small story drift ratio as 0.3%. (2) In the time history analysis, the story drift ratio is sufficient for the requirement of Korean Code, But coupling elements at most stories of the buildings occurred yielding. i. e. the earthquake resistant capacity of shear wall structures is not sufficient at 0.2g.

  • PDF