• Title/Summary/Keyword: Coupling loss factor

Search Result 116, Processing Time 0.029 seconds

A Study on the PZT Application for Spacecraft Components (압전진동자의 우주부품 활용에 관한 연구)

  • Lee, Sang-Hoon;Hwang, Kwon-Tae;Cho, Hyokjin;Seo, Hee-Jun;Moon, Guee-Won
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.32-39
    • /
    • 2013
  • All spacecraft components shall be checked for compatibility with vacuum using CVCM and TML in advance. CVCM and TML of the PZT-5 piezoelectric vibrator has to be less than 0.1% and 1.0% respectively. Also, it has less than $500ng/cm^2/hr$ of TQCM for vacuum bake-out test using high temperature and high vacuum. Thus, the piezoelectric vibrator may be employed in the vacuum environments. Finally, it can be confirmed that the characteristics change of the piezoelectric vibrator is less than 1% under vacuum environments. Also, the temperature dependency of the characteristics in the PZT-5 piezoelectric vibrator with the lateral mode was investigated in the range of $-100^{\circ}C$ to $90^{\circ}C$ using the thermal vacuum chamber to utilize the vibrator to the aerospace industries. As the results, at room temperature, the resonant and anti-resonant frequencies had the minimum value, whereas, the dielectric constant increased linearly from about 2500 to 7500 in the given temperature range. The mechanical loss decreased linearly from 0.08 to 0.03.

Analysis of Elements for Efficiencies in Magnetically-Coupled Wireless Power Transfer System Using Metamaterial Slab (메타물질 Slab이 포함된 자계 결합 무선 전력 전송 시스템 효율 요소 분석)

  • Kim, Gunyoung;Oh, TaekKyu;Lee, Bomson
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1128-1134
    • /
    • 2014
  • In this paper, the effects of a metamaterial slab with negative permeability in a magnetically coupled wireless power transfer system (WPT) in the overall performance are analyzed quantitatively in terms of the effective quality factors of the loop resonators and coupling coefficient considering the slab losses, based on an equivalent circuit. Using the ideal metamaterial slab(lossless slab), the WPT efficiency is improved considerably by the magnetic flux focusing. However, the practical lossy slab made of RRs or SRRs limits the significant enhancement of WPT efficiency due to the relatively high losses in the slab consisting of RRs or SRRs near the resonant frequency. For the practical loop resonator, other than a point magnetic charge, using the practical lossy metamaterial slab in order to improve the transfer efficiency, the width of the slab needs to be optimized somewhat less than the half of the distance between two loop resonators. For the low-loss slab with its loss tangent of 0.001, the WPT efficiency is maximized at 93 % when the ratio of the slab width and the distance between the two resonators is approximately 0.35, compared with 53 % for the case without the slab. The efficiency in case of employing the high-low slab(loss tangent: 0.2) is maximized at 61 % when the slab ratio is 0.25.

Theoretical Analysis of Bragg-Reflector Type FBAR with Resonance Mode (공진 모드에 따른 Bragg-Reflector Type FBAR 의 이론적 분석)

  • 조문기;윤영섭
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.11
    • /
    • pp.9-18
    • /
    • 2003
  • Two configurations of Film Bulk Acoustic Wave Resonators with acoustic quater-wave bragg reflector layers are theoretically analyzed using equivalent circuits and the difference of their characteristics are discussed. We compare the characteristics of λ/2 mode to those of ideal FBAR with top and bottom electrode contacting air and the characteristics of λ/4 mode to those of ideal FBAR with top electrode contacting air and bottom electrode clamped. We assume that the piezoelectric film is ZnO, the electrode is A1 and the substrate is Si, ABCD parameters are extracted and input impedance is calculated by converting the equivalent circuit from Mason equivalent circuits to the simplified equivalent circuits that ABCD parameters are extracted possible, From the variation of resonance frequency due to the change of thickness of reflector layers and the variation of electrical Q due to the change of mechanical Q of reflector layers, it is confirmed that the reflector layer just under the bottom electrode have the greatest effect on the varation of resonance frequency and electrical Q. It is shown that the number of reflector layers required for the saturation of electrical Q decreases with the increase of the impedance ratio of reflector layers and electrical Q of λ/2 mode is larger than that of λ/4 mode, Electromechanical coupling factor is independent of the number of layers, The impedance ratio of reflector layers becomes larger as the electromechanical coupling factor becomes larger, The electromechanical coupling factor of the two mode are smaller than those of ideal FBARs because of the trapping of acoustic energy in the reflector layers, The insertion loss of the ladder filter decreases with the increase of the number of reflector layers but the bandwidth is not affected much by the number of reflector layers, As the impedance ratio of reflector layers becomes larger the insertion loss becomes smaller and the bandwidth becomes wider, In our analysis of the two mode, characteristics of λ/2 mode appear to be slightly more favorable than that of λ/4 mode

Thickness-Dependent Properties of Undoped and Mn-doped (001) PMN-29PT [Pb(Mg1/3Nb2/3)O3-29PbTiO3] Single Crystals

  • Oh, Hyun-Taek;Joo, Hyun-Jae;Kim, Moon-Chan;Lee, Ho-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.290-298
    • /
    • 2018
  • In order to investigate the effect of thickness on the dielectric and piezoelectric properties of (001) PMN-29PT single crystals, three different types of PMN-29PT samples were prepared using the solid-state single crystal growth (SSCG) method: high density crystal [99%], low density crystal [95%], and high density crystal doped with Mn [98.5%]. When their thickness decreased from 0.5 mm to 0.05 mm, their dielectric constant ($K_3{^T}$), piezoelectric constants ($d_{33}$ and $g_{33}$), and electromechanical coupling factor ($k_t$) decreased continuously. However, their dielectric loss (tan ${\delta}$) increased. The addition of Mn to PMN-PT induced an internal bias electric field ($E_I$), increased the coercive electric field ($E_C$), and prevented local depoling. Therefore, Mn-doped PMN-PT crystals show high stability as well as high performance, even in the form of very thin plates (< 0.2 mm), and thus are suitable for application to high frequency composites, medical ultrasound probes, non-destructive testing devices (NDT), and flexible devices.

Modulator of surface plasmon polariton based cycle branch graphene waveguide

  • Zhu, Jun;Xu, Zhengjie;Xu, Wenju;Wei, Duqu
    • Carbon letters
    • /
    • v.25
    • /
    • pp.84-88
    • /
    • 2018
  • At present, an important research area is the search for materials that are compatible with CMOS technology and achieve a satisfactory response rate and modulation efficiency. A strong local field of graphene surface plasmon polariton (SPP) can increase the interaction between light and graphene, reduce device size, and facilitate the integration of materials with CMOS. In this study, we design a new modulator of SPP-based cycle branch graphene waveguide. The structure comprises a primary waveguide of graphene-$LiNbO_3$-graphene, and a secondary cycle branch waveguide is etched on the surface of $LiNbO_3$. Part of the incident light in the primary waveguide enters the secondary waveguide, thus leading to a phase difference with the primary waveguide as reflected at the end of the branch and interaction coupling to enhance output light intensity. Through feature analysis, we discover that the area of the secondary waveguide shows significant localized fields and SPPs. Moreover, the cycle branch graphene waveguide can realize gain compensation, reduce transmission loss, and increase transmission distance. Numerical simulations show that the minimum effective mode field area is about $0.0130{\lambda}^2$, the gain coefficient is about $700cm^{-1}$, and the quality factor can reach 150. The structure can realize the mode field limits of deep subwavelength and achieve a good comprehensive performance.

Dielectric and piezoelectric properties of lead-free $(Na_{0.5}K_{0.5})NbO_3$-Ba(Ti, Sn)$O_3$ ceramics

  • Cha, Yoo-Jeong;Kim, Chang-Il;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.30-30
    • /
    • 2008
  • Lead-free piezoelectric ceramics 0.97$(Na_{0.5}K_{0.5})NbO_3$-0.03Ba$(Ti_{1-x}Sn_x)O_3$ [NKN-BTS-x] ceramics doped with 1 mol% $MnO_2$ have been fabricated by a sintering technique with muffling. The $MnO_2$-doped NKN-BTS-x ceramics with x$\leq$0.2 have pure orthorhombic perovskite structure at room temperature. The dense microstructure was developed with grain growth as an increase of amount of Sn. Moreover, the addition of Sn was found to have a significant influence on piezoelectric properties. In particular, the $MnO_2$-doped NKN-BTS-0.1 ceramics showed improved piezoelectric properties of piezoelectric constant ($d_{33}$=145pC/N), relatively large electromechanical coupling factor ($k_p$=43%), dielectic constant (${\varepsilon}^T_{33}/{\varepsilon}_0$=676) dielectric loss (tan$\delta$=1.3%).

  • PDF

Development of High-Quality LTCC Solenoid Inductor using Solder ball and Air Cavity for 3-D SiP

  • Bae, Hyun-Cheol;Choi, Kwang-Seong;Eom, Yong-Sung;Kim, Sung-Chan;Lee, Jong-Hyun;Moon, Jong-Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.4
    • /
    • pp.5-8
    • /
    • 2009
  • In this paper, a high-quality low-temperature co-fired ceramic (LTCC) solenoid inductor using a solder ball and an air cavity on a silicon wafer for three-dimensional (3-D) system-in-package (SiP) is proposed. The LTCC multi-layer solenoid inductor is attached using Ag paste and solder ball on a silicon wafer with the air cavity structure. The air cavity is formed on a silicon wafer through an anisotropic wet-etching technology and is able to isolate the LTCC dielectric loss which is equivalent to a low k material effect. The electrical coupling between the metal layer and the LTCC dielectric layer is decreased by adopting the air cavity. The LTCC solenoid inductor using the solder ball and the air cavity on silicon wafer has an improved Q factor and self-resonant frequency (SRF) by reducing the LTCC dielectric resistance and parasitic capacitance. Also, 3-D device stacking technologies provide an effective path to the miniaturization of electronic systems.

  • PDF

Characteristics analysis of Piezoelectric Thin Film SAW filter using Mg-doped GaN/Sapphire Structure (Mg-Doped GaN/Sapphire 구조로 제작된 압전 박막 SAW 필터의 특성분석)

  • 장철영;정은자;정영철;최현철;이정희;이용현
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.759-762
    • /
    • 2003
  • The epitaxially grown Mg-doped GaN thin film was prepared by MOCVD (Metal Organic Chemical Vapor Deposition) for a SAW(Surface Acoustic Wave) filter. Mg-doped GaN thin film had enough properties for a SAW filter which include crystallinity and morphology. The surface morphology and crystalline of the Mg-doped GaN thin films were characterized using AFM and an X-ray rocking curve. The SAW filter, which was fabricated by lift-off process and frequency response, was measured by HP 8753C network analyzer. Center frequency was 96.687 MHz and SAW velocity was 5801 m/s when wavelength(λ) was 60${\mu}{\textrm}{m}$. Insertion loss was over -10 dB, Q was factor over 200, and side lobe attenuation was over 22 dB which was suitable for use as a SAW filter. Electro-mechanical coupling coefficient (k$^2$) was calculated from the measured data. k$^2$ was from 1 % to 1.44 %. The fabricated SAW filter using Mg-doped GaN/sapphire structure has good qualities as a filter and will be used as a SAW filter for operating RF frequency.

  • PDF

The Effect of $LaMnO_3$ Addition on Sintering Phenomena and Electro-mechanical Properties of PZT ($LaMnO_3$ 의 첨가가 PZT의 소결현상 및 전기적 기계적 성질에 미치는 영향)

  • 김현준;주웅길
    • Journal of the Korean Ceramic Society
    • /
    • v.17 no.2
    • /
    • pp.80-88
    • /
    • 1980
  • The sintering phenomena and piezoelectric properties of PZT ceramics of composition $Pb(Zr_{0.54} Ti_{0.46})O_3$ were investigated when a small quantity of $La_2O_3$ , $LaMnO_3$, $LaCrO_3$ were added. The unwanted chemical composition change in PZT during sinterin porces du to PbO evaporation poses a severe problem in PZt manufacturinig. It is observed tat an addition of small amount of $LaMnO_3$ to PZT markedly decreases the evaporation of PbO during sintering . The green compact of (1-x) PZT.xLaMnO3(x=0.02~0.10) could be sintered of under O2 atmosphere alone with no significant loss of PbO. The planar coupling factor kp of the sintered $0.98Pb(Zr_{0.54} Ti_{0.46})O_{3.0.02}LaMnO}3$ is similar to that of commercial PZT 6A. Microstructure investigation shows that part of sintering process of $Pb(Zr, Ti)O_3$.$LaMnO_3$ system progresses via liquid phase sintering. It is believed that the evaporation of PbO in PZT sintering is restricted by the addition of $LaMnO_3$ due to the above phenomena. Furthermore the solid solution of $LaMnO_3$ in PZT causes diffuses phase transition.

  • PDF

Structural and Electrical Properties of (Na0.5K0.5)NbO3 Ceramics with Addition of BiTiO3 (BiTiO3 첨가에 따른 (Na0.5K0.5)NbO3 세라믹스의 구조적, 전기적 특성)

  • Lee, Tae-Ho;Kim, Dae-Young;Jo, Seo-Hyeon;Jeong, Gwang-Ho;Lee, Sung-Gap
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2093-2096
    • /
    • 2011
  • In this study, lead-free $(Na_{0.5}K_{0.5})NbO_3-BiTiO_3$ ceramics were fabricated by a conventional mixed oxide method. Structural and electrical properties of lead-free $(Na_{0.5}K_{0.5})NbO_3$ ceramics with the variation of $BiTiO_3$ were investigated. The results of X-ray diffraction analysis showed a typical polycrystalline perovskite structure without presence of the second phase in all specimens. Sintered density increased with an increasing of BTO and the specimen added with 0.07 mol% of $BiTiO_3$ showed the maximum value of 97.8%. Average grain size decreased and densification increased with an increasing of $BiTiO_3$ contents. The electromechanical coupling factor of the 0.01 mol% $BiTiO_3$ doped NKN specimens was 0.32. Dielectric constant, dielectric loss and Curie temperature of the 0.07 mol% $BiTiO_3$ doped NKN specimens were 1185, 0.145% and $400^{\circ}C$, respectively.