• Title/Summary/Keyword: Coupling efficiency

Search Result 650, Processing Time 0.027 seconds

Design of Capacitive Power Transfer Using a Class-E Resonant Inverter

  • Yusop, Yusmarnita;Saat, Shakir;Nguang, Sing Kiong;Husin, Huzaimah;Ghani, Zamre
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1678-1688
    • /
    • 2016
  • This paper presents a capacitive power transfer (CPT) system using a Class-E resonant inverter. A Class-E resonant inverter is chosen because of its ability to perform DC-to-AC inversion efficiently while significantly reducing switching losses. The proposed CPT system consists of an efficient Class-E resonant inverter and capacitive coupling formed by two flat rectangular transmitter and receiver plates. To understand CPT behavior, we study the effects of various coupling distances on output power performance. The proposed design is verified through lab experiments with a nominal operating frequency of 1 MHz and 0.25 mm coupling gap. An efficiency of 96.3% is achieved. A simple frequency tracking unit is also proposed to tune the operating frequency in response to changes in the coupling gap. With this resonant frequency tracking unit, the efficiency of the proposed CPT system can be maintained within 96.3%-91% for the coupling gap range of 0.25-2 mm.

Analysis of Inductive Power Transfer System According to Layer Structure of Transceiver Coil (자기유도방식 무선전력전송 시스템 송수신 코일 Layer 구조에 따른 특성 분석)

  • Kim, Cheol-Min;Yoo, Jae-Gon;Kim, Jong-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.78-83
    • /
    • 2019
  • In this study, we analyze the structure of the transceiver coil in the inductive power transfer (IPT) system. In the IPT system, the transceiver coil design needs to have the highest magnetic coupling possible because of the relatively low magnetic coupling due to the large gap of distance without the core. The transmitting coil may be formed as a multi-layer type according to the distance between the transmitting and receiving coils if the receiving coil is configured as a multi-layer type on the inner structure of the receiving apparatus, thereby improving the magnetic coupling and system efficiency. We compare and analyze the coil magnetic coupling, and system efficiency according to the layer structure of the transmitting and receiving coils and verify the analysis by JMAG simulation. Experimental results show that the layer structure of the transceiver should be considered according to the inner space of the receiving device and the spacing distance.

Research on the Efficiency Improvement of the Cymbal-type Piezoelectric Energy Harvester (심벌형 압전 에너지 하베스터 에너지 수율 향상 연구)

  • Na, Yeong-Min;Park, Jong-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.70-76
    • /
    • 2017
  • The pollution problem of fossil energy sources has caused the development of green energy harvesting systems. Piezoelectric energy harvesting technology has been developed under those external environmental factors. A piezoelectric energy harvester can be defined as a device which transforms mechanical vibration or impact energy into electrical energy. Most researches have focused on bender structures. However, these have a limitation on energy efficiency because of the small effective electromechanical coupling factor, around 10%. Therefore, we should look for a new design for energy harvesting. A cymbal energy harvester can be a good candidate for the high-power energy harvester because it uses a high amplification mechanism using endcaps while keeping a higher electromechanical coupling factor. In this research, we focused on energy efficiency improvements of the cymbal energy harvester by changing the polarization direction, because the electromechanical coupling factor of the k33 mode and the k15 mode is larger than that of the k31 mode. Theoretically, we checked the cymbal harvester with radial polarization and it could obtain 6 times larger energy than that with the k31 direction polarization. Furthermore, we verified the theoretical expectation using the finite element method program. Consequently, we could expect a more efficient cymbal harvester with the radial polarization by comparing two polarization directions.

Optimization analysis on collection efficiency of vacuum cleaner based on two-fluid and CFD-DEM model

  • Wang, Lian;Chu, Xihua
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.261-276
    • /
    • 2020
  • The reasonable layout of vacuum cleaner can effectively improve the collection efficiency of iron filings generated in the process of steel production. Therefore, in this study, the CFD-DEM coupling model and two-fluid model are used to calculate the iron filings collection efficiency of vacuum cleaner with different inclination/cross-sectional area, pressure drop and inlet angle. The results are as follows: The CFD-DEM coupling method can truly reflect the motion mode of iron filings in pneumatic conveying. Considering the instability and the decline of the growth rate of iron filings collection efficiency caused by high pressure drop, the layout of 75° inclination is suggested, and the optimal pressure drop is 100Pa. The optimal simulation results based on two-fluid model show that when the inlet angle and pressure drop are in the range of 45°~65° and 70Pa~100Pa, larger mass flow rate of iron filings can be obtained. It is hoped that the simulation results can offer some suggestion to the layout of vacuum cleaner in the rolling mill.

Optical Power Transfer of Grating-Assisted Directional Coupler with Three-Guiding Channels: TM modes Case

  • Ho, Kwang-Chun
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.126-130
    • /
    • 2003
  • The optical power transfer of TM modes in grating-assisted directional couplers (GADCs) with three-guiding channels is rigorously evaluated by defining a novel coupling efficiency amenable to the rigorous analytical solutions of modal transmission-line theory (MTLT). The results reveal that the incident power is sensitively partitioned through three output channels in terms of such grating parameters as the period, the duty cycle, and wavelength.

  • PDF

Sing1e-Mode Fiber to Fiber Coupling efficiency compare CODE-V result with theory result (CODE-V와 이론식 결과를 이용한 싱글 모드 광섬유 커플링 효율에 관한 고찰)

  • Kim, A-Ron;Kim, Ho-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1964-1965
    • /
    • 2002
  • This paper reports on the single mode fiber coupling efficiency. There is difference between simulation by CODE-V and theoretical result, we observed CEO which is taken by experiment in lab and found out that CEO taken by CODE-V was closer to real experiment result then theoretical result.

  • PDF

Dynamic Characteristics of torsion for Marine Propulsion Shafting system with Elastic Rubber Coupling (고무 탄성커플링을 갖는 선박 추진용 축계 비틀림의 동특성)

  • 이돈출;김상환;유정대
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.742-748
    • /
    • 2003
  • As for marine propulsion shafting system using 4 stroke diesel engine, it is common to apply reduction gear box between diesel engine and shafting with a view of increasing mechanical efficiency, which inevitably require elastic coupling due to avoid chattering and hammering inside of gear box. In this study, optimum method of rectifying propulsion shafting system in case of 750ton fishing vessel specially in a view of torsional vibration, is theoretically studied. After exchange of diesel engine and gear box, analysis result of torsional vibration get worse and so some countermeasure are needed. The elastic coupling is modified from present block type rubber coupling showing relatively high torsional stiffness to rubber coupling with two series elements directly connected. The vibration measurement using two laser torsion meters was done during sea trial, whose results are compared to those of calculation and verified.

  • PDF

Design of a Rod-Type Aspheric Lens Collimator for Optical Telecommunication (막대 형태의 비구면 렌즈를 이용한 광통신용 시준기의 설계)

  • Kang, Seok-Bong;Kang, Eun-Kyoung;HwangBo, Chang-Kwon;Kang, Sang-Do;Kim, Jong-Sup
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.1
    • /
    • pp.31-35
    • /
    • 2008
  • A rod-type aspheric lens collimator for the optical telecommunication system which shows high coupling efficiency and experiences small coupling loss for misalignment errors is designed. The working distance, thickness, and diameter of the rod-type aspheric lens are determined to be close to those of the GRIN lens collimator in order to replace the GRIN lens with the rod-type aspheric lens. Since the coupling loss mainly originated from the spherical aberration of the lens, the spherical aberration in the rod-type aspheric lens is reduced drastically, and it turns out that the coupling efficiency of the rod-type aspheric lens collimator is higher than that of the available collimators, such as ball lens, GRIN lens, and C-type lens collimators.

Removal Efficiency Of Toluene by EBeam-Catalyst Coupling System (EBeam-촉매 Coupling을 이용한 톨루엔 제어 특성 연구)

  • Park Kang-Nam;Kim Ki-Joon;Kim Jo-Chun;Young Sunwoo;Song Hee-Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.667-673
    • /
    • 2005
  • An EBeam (electron beam)-catalyst coupling technique has been developed to control aromatic volatile organic compounds (VOCs) by annexing the catalyst with already existing EBeam technology. In this study, toluene emitted from various industrial coating processes was selected as a representative VOC. The concentration of toluene of concern was 200 ppm. There was an increase in the removal efficieny of toluene by increasing the absorbed dose (kGy) in the EBeam-only and the EBeam-catalyst coupling systems. Compared to EBeam-only system under the same existing EBeam-Pt $1\%$ coupling conditions, EBeam-Pt $1\%$ coupling system revealed 36, 29, 30$\%$ increase in toluene treatmenet at (5, 6.7, 8.7 kGy), respectively. In addition, $O_{3}$ was decreased and CO, $CO_{2}$ were increased by increasing the absorbed dose (kGy) in the EBeam-catalyst (Pt $1\%$, Cu $1\%$) coupling systems. Therefore, it was concluded that the EBeam-catalyst coupling system had a synergy effect on toluene control, compared to the EBeam-only system.

Transformer Design Methodology to Improve Transfer Efficiency of Balancing Current in Active Cell Balancing Circuit using Multi-Winding Transformer (다중권선 변압기를 이용한 능동형 셀 밸런싱 회로에서 밸런싱 전류 전달 효율을 높이기 위한 변압기 설계 방안)

  • Lee, Sang-Jung;Kim, Myoung-Ho;Baek, Ju-Won;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.4
    • /
    • pp.247-255
    • /
    • 2018
  • This paper proposes a transformer design of a direct cell-to-cell active cell balancing circuit with a multi-winding transformer for battery management system (BMS) applications. The coupling coefficient of the multi-winding transformer and the output capacitance of MOSFETs significantly affect the balancing current transfer efficiency of the cell balancing operation. During the operation, the multi-winding transformer stores the energy charged in a specific source cell and subsequently transfers this energy to the target cell. However, the leakage inductance of the multi-winding transformer and the output capacitance of the MOSFET induce an abnormal energy transfer to the non-target cells, thereby degrading the transfer efficiency of the balancing current in each cell balancing operation. The impacts of the balancing current transfer efficiency deterioration are analyzed and a transformer design methodology that considers the coupling coefficient is proposed to enhance the transfer efficiency of the balancing current. The efficiency improvements resulting from the selection of an appropriate coupling coefficient are verified by conducting a simulation and experiment with a 1 W prototype cell balancing circuit.