• Title/Summary/Keyword: Coupling efficiency

Search Result 650, Processing Time 0.03 seconds

Examination of Efficiency Based on Air Gap and Characteristic Impedance Variations for Magnetic Resonance Coupling Wireless Energy Transfer

  • Agcal, Ali;Bekiroglu, Nur;Ozcira, Selin
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.57-61
    • /
    • 2015
  • In this paper wireless power transmission system based on magnetic resonance coupling circuit was carried out. With the research objectives based on the mutual coupling model, mathematical expressions of optimal coupling coefficients are examined. Equivalent circuit parameters are calculated by Maxwell software, and the equivalent circuit was solved by Matlab software. The power transfer efficiency of the system was derived by using the electrical parameters of the equivalent circuit. System efficiency was analyzed depending on the different air gap values for various characteristic impedances. Hence, magnetic resonance coupling involves creating a resonance and transferring the power without radiating electromagnetic waves. As the air gap between the coils increased the coupling between the coils were weakened. The impedance of circuit varied as the air gap changed, affecting the power transfer efficiency.

A Highly Efficient Method of Light Coupling into Optical Fiber with a Tapered Microlens (Tapered Lens를 사용한 Light Source와 Optical Fiber의 고효율 Coupling)

  • 이상호;강민호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.16 no.4
    • /
    • pp.22-26
    • /
    • 1979
  • Microlenses with an extremely small radius of curvature are efficiently use d to couple LED/laser diode light into optica1 fiber. We propose a Tapered lens for the highly efficient coupling of the optical fiber communication light souses into the fiber. Ray optical analysis shows that the maximum coupling efficiency is as high as 90 %, Tapered lens with optimum parameters are fabricated by using heating and pulling technique. Experiment shows that this new technique improves the coupling efficiency by two and four times for LED and laser diode, respectively, as compared with the simple flat - end coupling.

  • PDF

Design of a Beam-coupling System for a Chip-integrated Spectrometer with a Discrete Linear Waveguide

  • Liu, Zhiying;Jiang, Xin;Li, Mingyu
    • Current Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.229-237
    • /
    • 2020
  • In this study, a beam-coupling system is designed to improve the coupling efficiency of achip-integrated spectrometer when the waveguide is arranged in a linear and discrete manner. In the proposed system the beam is shaped to be anti-Gaussian, to deposit adequate energy in the edge waveguides. The beam is discretely coupled to the corresponding waveguide by a microlens array, to improve the coupling efficiency, and is compressed by a toroidal lens to match the linear discrete waveguides. Based on the findings of this study, the coupling efficiency of the spectrometer is shown to increase by a factor of 2.57. Accordingly, this study provides a reference basis for the improvement of the coupling efficiency of other similar spectrometers.

Implementation of Wireless Power Transfer Circuit by Using Magnetic Resonant Coupling Method

  • Lho, Young-Hwan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.306-309
    • /
    • 2019
  • Wireless charging is a technology of transmitting power through an air gap to an electrical load for the purpose of energy dissemination. Compared to traditional charging with code, wireless power charging has many benefits of avoiding the hassle from connecting cables, rendering the design and fabrication of much smaller devices without the attachment of batteries, providing flexibility for devices, and enhancing energy efficiency, etc. A transmitting coil and a receiving coil for inductive coupling or magnetic resonant coupling methods are available for the near field techniques, but are not for the far field one. In this paper, the wireless power transfer (WPT) circuit by using magnetic resonant coupling method with a resonant frequency of 13.45 Mhz for the low power system is implemented to measure the power transmission efficiency in terms of mutual distance and omnidirectional angles of receiver.

Improvement of the Beam-Wave Interaction Efficiency Based on the Coupling-Slot Configuration in an Extended Interaction Oscillator

  • Zhu, Sairong;Yin, Yong;Bi, Liangjie;Chang, Zhiwei;Xu, Che;Zeng, Fanbo;Peng, Ruibin;Zhou, Wen;Wang, Bin;Li, Hailong;Meng, Lin
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1362-1369
    • /
    • 2018
  • A method aimed at improving the beam-wave interaction efficiency by changing the coupling slot configuration has been proposed in the study of extended interaction oscillators (EIOs). The dispersion characteristics, coupling coefficient and interaction impedance of the high-frequency structure based on different types of coupling slots have been investigated. Four types of coupled cavity structures with different layouts of the coupling slots have been compared to improve the beam-wave interaction efficiency, so as to analyze the beam-wave interaction and practical applications. In order to determine the improvement of the coupling slot to a coupled cavity circuit in an EIO, we designed four nine-gap EIOs based on the coupled cavity structure with different coupling slot configurations. With different operating frequencies and voltages takes into consideration, beam voltages from 27 to 33 kV have been simulated to achieve the best beam-wave interaction efficiency so that the EIOs are able to work in the $2{\pi}$ mode. The influence of the Rb and the ds on the output power is also taken into consideration. The Rb is the radius of the electron beam, and the ds is the width of the coupling slot. The simulation results indicate that a single-slot-type EIO has the best beam-wave interaction efficiency. Its maximum output power is 2.8 kW and the efficiency is 18% when the operating voltage is 31 kV and electric current is 0.5 A. The output powers of these four EIOs that were designed for comparison are not less than 1.7 kW. The improved coupling-slot configurations enables the extended interaction oscillator to meet the different engineering requirements better.

Comparative Study of Uniform and Nonuniform Grating Couplers for Optimized Fiber Coupling to Silicon Waveguides

  • Lee, Moon Hyeok;Jo, Jae Young;Kim, Dong Wook;Kim, Yudeuk;Kim, Kyong Hon
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.291-299
    • /
    • 2016
  • We have investigated the ultimate limits of nonuniform grating couplers (NGCs) for optimized fiber coupling to silicon waveguides, compared to uniform grating couplers (UGCs). Simple grating coupler schemes, which can be fabricated in etching steps of the conventional complementary metal-oxide semiconductor (CMOS) process on silicon-on-insulator (SOI) wafers without forming any additional overlay structure, have been simulated numerically and demonstrated experimentally. Optimum values of the grating period, fill factor, and groove number for ultimate coupling efficiency of the NGCs are determined from finite-difference time-domain (FDTD) simulation, and confirmed with experimentally demonstrated devices by comparison to those for the UGCs. Our simulated results indicate that maximum coupling efficiency of NGCs is possible when the minimum pattern size is below 50 nm, but the experimental value for the maximum coupling efficiency is limited by the attainable fabrication tolerance in a practical device process.

Analysis add Comparison of the Performance of Optical Collimator by Lenses (렌즈에 따른 광콜리메이터 성능 비교 분석)

  • 선화영;최두선;제태진;최기봉;김동식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.132-136
    • /
    • 2002
  • Optical collimating lenses are play a role as maintenance parallel light and as a kind of optical collimating lens, there is Ball lenses, GRIN-rod lenses, spherical lenses and aspherical lenses etc. but recently GRIN lens has monopolized a market. The performance of optical collimator depended on the coupling efficiency. In this paper, we were compared and analyzed to be measured values of coupling efficiency with respect to optical working distance using GRIN rod lenses and spherical lenses. In the case of GRIN lenses with a beam size of 420 ${\mu}{\textrm}{m}$, the minimum coupling efficiency was obtained to a measured value of 0.15 ㏈ and in the case of spherical lenses was obtained to a measured value of 0.12 ㏈ on the same condition. In results, we found that a performance of spherical lenses be better as compared with a that of GRIN lens.

  • PDF

The Resin Impregnation with Silane Coupling on Graphite (흑연의 실란커플링에 의한 수지함침)

  • 조광연;김경자;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.10
    • /
    • pp.1021-1026
    • /
    • 2003
  • Resin impregnation of carbon materials was affected by surface of carbon materials. The surface of carbon materials with coupling treatment improved comparability and wettability with resin, and that increased impregnation efficiency and properties of carbon materials. As a results of FT-IR, The silanol was coated on carbon surface with one layer. Coupling treatment of carbon materials increased impregnation efficiency, which improved porosity, mechanical strength, density and friction behavior.

Capacitive Coupling LLC Wireless Power Transfer Converter Through Glasses of Electric Vehicles (전기자동차의 유리를 통한 커패시티브 커플링 LLC 무선 전력 전송 컨버터)

  • You, Young-Soo;Yi, Kang-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.542-545
    • /
    • 2016
  • This work proposes a capacitive coupling-based wireless battery charging circuit that is built with vehicle glasses for electric vehicles. A capacitive coupling wireless power transfer offers many advantages, such as low metal impact and low energy transfer efficiency changes in accordance with changes in position. However, a large coupling capacitor is needed for high power transfer. Therefore, a new capacitive coupling-based wireless power transfer LLC resonant converter built with the glasses of an electric vehicle is proposed. The proposed converter is composed of coupling capacitors with glasses of an electric vehicle and two transformers for impedance transformation. The proposed LLC converter can transfer large power and obtain high efficiency with zero voltage switching. The validity and features of the proposed circuit is verified by experimental results with a 1.2 kW prototype.

Coupling Efficiency of Asymmetric Grating-Assisted Directional Coupler (비대칭 격자 구조형 방향성 결합기의 결합효율)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.187-192
    • /
    • 2017
  • Rigorous longitudinal modal transmission-line theory (L-MTLT) is applied to analyze maximum power transfer in asymmetric grating-assisted directional couplers(A-GADC). By defining a coupling efficiency amenable to rigorous analytical solutions and interference between symmetric and asymmetric supermodes, the power exchange of TE modes as a function of propagation distance is numerically evaluated. The numerical result reveals that maximum power transfer occurs at a grating period ${\Lambda}_{eq}$, in which the insertion loss of supermodes is equal to each other. That is, it is generally different from conventional phase-matching condition of GADC. Furthermore, as the asymmetric profile of grating change to symmetrical profile, the coupling length decreases and the coupling efficiency for power transmission increases.