• Title/Summary/Keyword: Coupling components

Search Result 351, Processing Time 0.031 seconds

A Short Wavelength Coplanar Waveguide Employing Periodic 3D Coupling Structures on Silicon Substrate

  • Yun, Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.118-120
    • /
    • 2016
  • A coplanar waveguide employing periodic 3D coupling structures (CWP3DCS) was developed for application in miniaturized on-chip passive components on silicon radio frequency integrated circuits (RFIC). The CWP3DCS showed the shortest wavelength of all silicon-based transmission line structures that have been reported to date. Using CWP3DCS, a highly miniaturized impedance transformer was fabricated on silicon substrate, and the resulting device showed good RF performance in a broad band from 4.6 GHz to 28.6 GHz. The device as was 0.04 mm2 in size, which is only 0.74% of the size of the conventional transformer on silicon substrate.

The Tuning of Oscillation Frequency by the Analysis of Characteristics of each Block in Ceramic VCO (세라믹 VCO의 Block 특성 분석을 통한 주파수 튜닝)

  • Yoo Chan-Sei;Lee Woo-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.2 s.31
    • /
    • pp.49-52
    • /
    • 2004
  • Ceramic components and modules using LTCC passives are being performed and on the passives included in modules have been studied nowadays. However the characteristics changes of passives in ceramic module due to the coupling between patterns, so each block in module, must be analyzed in the state of module including coupling factors. In our research, characteristics of each block of VCO, resonator part, oscillator part, output part were measured and analyzed to allow the prediction of behavior of VCO.

  • PDF

The analysis of monoblock characteristics in ceramic VCO (세라믹 VCO 내 Block 특성 분석)

  • Yoo, Joshua;Kim, Erick;Lee, Y.S.;Lee, W.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.269-272
    • /
    • 2003
  • Nowadays, the study on the ceramic components and modules using LTCC is being performed and on the passives included in modules is being done also. But the characteristics of passives changes in ceramic module due to the coupling between patterns, so each block in module must be analyzed in the state of module including coupling factors. In our research each block of VCO, resonator part, oscillator part, output part is measured and analyzed and that allows the prediction of behavior of VCO.

  • PDF

Performance of Hybrid Laser Diodes Consisting of Silicon Slab and InP/InGaAsP Deep-Ridge Waveguides

  • Leem, Young-Ahn;Kim, Ki-Soo;Song, Jung-Ho;Kwon, O-Kyun;Kim, Gyung-Ock
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.339-341
    • /
    • 2010
  • The fundamental transverse mode lasing of a hybrid laser diode is a prerequisite for efficient coupling to a single-mode silicon waveguide, which is necessary for a wavelength-division multiplexing silicon interconnection. We investigate the lasing mode profile for a hybrid laser diode consisting of silicon slab and InP/InGaAsP deep ridge waveguides. When the thickness of the top silicon is 220 nm, the fundamental transverse mode is lasing in spite of the wide waveguide width of $3.7{\mu}m$. The threshold current is 40 mA, and the maximum output power is 5 mW under CW current operation. In the case of a thick top silicon layer (1 ${\mu}m$), the higher modes are lasing. There is no significant difference in the thermal resistance of the two devices.

A Design Process Analysis with the DSM and the QFD in Automatic Transmission Lever Design (DSM과 QFD 분석을 이용한 오토레버 설계 과정의 분석)

  • 천준원;박지형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.9-12
    • /
    • 2003
  • This paper describes a step-by-step method to minimize design iterations in a process of product design change. In the design process, two components are coupled if a change of a component can require the other components change, and design iterations are generated by the coupling. The design iteration is one of main factors that increase design effort. In this study, three matrices are used to solve the design iteration of automatic transmission lever, Requirement-Engineering matrix, Engineering-Components matrix, and DSM(Design Structure Matrix). Firstly, with the DSM, the product architecture and conceptual design process are proposed from product function analysis. Secondly, with the QFD, the Requirement-Engineering matrix and Engineering-Components matrix present the relationship among customer requirements, engineering issues, and product components. Lastly, the results of the QFD analysis are used in the DSM to solve the component interactions and to provide design

  • PDF

Placement Optimization of Power Components in Static Power Converters under Spatial and Thermal Constraints

  • Larouci, Cherif;Ejjabraoui, Kamal;Lefranc, Pierre;Marchand, Claude
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.368-376
    • /
    • 2012
  • This paper deals with an optimization approach of 3D space placement of power components under volume and thermal constraints. It consists in optimizing semiconductors positions on a heat sink by respecting the components junction temperatures and minimizing the heat sink size. The aim is to remove risks on the 3D converter components placement and ensure their effective integration before carrying out the first physical prototype. This approach is based on coupling an optimization environment with a thermal finite element simulation tool. A pre-sizing step using analytical models is performed to set the optimization computations coupled to numerical simulation.

Complex Vector Current Control of Grid Connected Inverter Robust for Inductance Variation (인덕턴스 변화에 강인한 계통연계형 인버터의 복소 벡터 전류제어기)

  • Lee, Taejin;Jo, Jongmin;Shin, Changhoon;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1648-1654
    • /
    • 2016
  • This paper analyzes complex vector current control for the enhanced cross-coupling compensation in accordance with parameter variation in grid-connected inverter system, and verifies through simulation and experiment. Complex vector current control is performed in the synchronous reference frame through d-q transformation. It generates cross-coupling components with rotating nominal angular frequency. In general, cross-coupling elements are compensated by decoupling terms added to output of conventional decoupling PI controller. But, it is impossible to compensate them perfectly which transient response is especially deteriorated such as large overshoot and slow tracking, when variation of grid impedance or measurement error occurs. However, complex vector current control can improve stability and response characteristic of current control regardless of the situation as before. Decoupling controller and complex vector controller are represented through complex forms, and these controllers are analyzed by using frequency response in s-domain, respectively. It is verified that complex vector controller has more superior response characteristic than decoupling controller through MATALB, PSIM and experimental in 5kW grid-connected inverter when L filter parameter is varied from 1.1mH to increase double, 2.2mH.

Design of Hot Heading Process and Evaluation of Mechanical Properties of Alloy718 Coupling Bolt for Gas Turbine (가스터빈용 Alloy718 커플링볼트의 열간 헤딩 공정설계 및 기계적 특성 평가)

  • Choi, H.S.;Lee, J.M.;Ko, D.C.;Lee, S.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.189-196
    • /
    • 2008
  • Alloy718 is the nickel-base super alloy well used as gas turbine components under severe operating conditions because of its high strength at high temperature and excellent creep resistance. In this study, a coupling bolt for the gas turbine component is manufactured by hot heading process instead of whole machining in order to improve the mechanical properties. Die shape for the hot heading has been designed by general design rule of hot forging and also optimal process condition has been investigated by finite element method. The initial billet temperature and the punch speed have been determined by $1150^{\circ}C$ and 600mm/s on the basis of finite element analysis, respectively. The coupling bolt has been manufactured by 200ton screw press and evaluated by experiment in order to investigate the mechanical properties. As a result of experiment, the mechanical properties such as hardness, tensile strength and creep behavior have been superior to those manufactured by machining.

Review of researches on coupled system and CFD codes

  • Long, Jianping;Zhang, Bin;Yang, Bao-Wen;Wang, Sipeng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2775-2787
    • /
    • 2021
  • At present, most of the widely used system codes for nuclear safety analysis are one-dimensional, which cannot effectively simulate the flow field of the reactor core or other structures. This is true even for the system codes containing three-dimensional modules with limited three-dimensional simulation function such as RELAP-3D. In contrast, the computational fluid dynamics (CFD) codes excel at providing a detailed three-dimensional flow field of the reactor core or other components; however, the computational domain is relatively small and results in the very high computing resource consuming. Therefore, the development of coupling codes, which can make comprehensive use of the advantages of system and CFD codes, has become a research focus. In this paper, a review focus on the researches of coupled CFD and thermal-hydraulic system codes was carried out, which summarized the method of coupling, the data transfer processing between CFD and system codes, and the verification and validation (V&V) of coupled codes. Furthermore, a series of problems associated with the coupling procedure have been identified, which provide the general direction for the development and V&V efforts of coupled codes.

Impact of spar-nacelle-blade coupling on the edgewise response of floating offshore wind turbines

  • Dinh, Van-Nguyen;Basu, Biswajit;Nielsen, Soren R.K.
    • Coupled systems mechanics
    • /
    • v.2 no.3
    • /
    • pp.231-253
    • /
    • 2013
  • The impact of spar-nacelle-blade coupling on edgewise dynamic responses of spar-type floating wind turbines (S-FOWT) is investigated in this paper. Currently, this coupling is not considered explicitly by researchers. First of all, a coupled model of edgewise vibration of the S-FOWT considering the aerodynamic properties of the blade, variable mass and stiffness per unit length, gravity, the interactions among the blades, nacelle, spar and mooring system, the hydrodynamic effects, the restoring moment and the buoyancy force is proposed. The aerodynamic loads are combined of a steady wind (including the wind shear) and turbulence. Each blade is modeled as a cantilever beam vibrating in its fundamental mode. The mooring cables are modeled using an extended quasi-static method. The hydrodynamic effects calculated by using Morison's equation and strip theory consist of added mass, fluid inertia and viscous drag forces. The random sea state is simulated by superimposing a number of linear regular waves. The model shows that the vibration of the blades, nacelle, tower, and spar are coupled in all degrees of freedom and in all inertial, dissipative and elastic components. An uncoupled model of the S-FOWT is then formulated in which the blades and the nacelle are not coupled with the spar vibration. A 5MW S-FOWT is analyzed by using the two proposed models. In the no-wave sea, the coupling is found to contribute to spar responses only. When the wave loading is considered, the coupling is significant for the responses of both the nacelle and the spar.