• Title/Summary/Keyword: Coupling components

Search Result 351, Processing Time 0.03 seconds

Implementation of a Windows NT Based Stream Server for Multimedia School Systems (멀티미디어 교실을 위한 윈도우 NT 기반 스트림 서버 구현)

  • 손주영
    • Journal of Korea Multimedia Society
    • /
    • v.2 no.3
    • /
    • pp.277-288
    • /
    • 1999
  • A distributed multimedia school system is developed for the multimedia classroom at high school and university. The system is designed and implemented for students to improve the learning efficiency through the personalized multimedia contents and pace of learning. The previously developed multimedia information retrieval systems have some limitations on being applied to the multimedia classroom: expensive cost per stream or poor retrieval quality inappropriate for education, unscalability of system and service, unfamiliar proprietary client environment, and difficulty for teachers to use the authoring tools and manage the authored teaching materials. The system we developed overcomes the above problems. It is so scalable as to be applicable not only to a segmented classroom but also to the world wide Internet. The stream server is one of the components of the system: stream servers clients, a service gateway system, and a authoring management system. This paper describes the design and implementation of the stream server. A single stream server can simultaneously playback the multimedia streams as many as clients at one classroom. This is achieved only by the software engine without any changes of the hardware architecture. The systematic coupling with other components gives the scalability of the system and the flexibility of services.

  • PDF

Modeling the effects of excess water on soybean growth in converted paddy field in Japan. 2. modeling the effect of excess water on the leaf area development and biomass production of soybean

  • Nakano, Satoshi;Kato, Chihiro;Purcell, Larry C.;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.308-308
    • /
    • 2017
  • The low and unstable yield of soybean has been a major problem in Japan. Excess soil moisture conditions are one of the major factors to restrict soybean productivity. More than 80 % of soybean crops are cultivated in converted paddy fields which often have poor drainage. In central and eastern regions of Japan, the early vegetative growth of soybean tends to be restricted by the flooding damage because the early growth period is overlapped with the rainy season. Field observation shows that induced excess water stress in early vegetative stage reduces dry matter production by decreasing intercepted radiation by leaf and radiation use efficiency (RUE) (Bajgain et al., 2015). Therefore, it is necessary to evaluate the responses of soybean growth for excess water conditions to assess these effects on soybean productions. In this study, we aim to modify the soybean crop model (Sinclair et al., 2003) by adding the components of the restriction of leaf area development and RUE for adaptable to excess water conditions. This model was consist of five components, phenological model, leaf area development model, dry matter production model, plant nitrogen model and soil water balance model. The model structures and parameters were estimated from the data obtained from the field experiment in Tsukuba. The excess water effects on the leaf area development were modeled with consideration of decrease of blanch emergence and individual leaf expansion as a function of temperature and ground water level from pot experiments. The nitrogen fixation and nitrogen absorption from soil were assumed to be inhibited by excess water stress and the RUE was assumed to be decreasing according to the decline of leaf nitrogen concentration. The results of the modified model were better agreement with the field observations of the induced excess water stress in paddy field. By coupling the crop model and the ground water level model, it may be possible to assess the impact of excess water conditions for soybean production quantitatively.

  • PDF

Mechanical Properties of Wood Flour-Polypropylene Composites: Effects of Wood Species, Filler Particle Size and Coupling Agent (목분-폴리프로필렌 복합재의 기계적 특성: 목재수종, 충진제 입자크기 및 상용화제의 영향)

  • Kang, In-Aeh;Lee, Sun-Young;Doh, Geum-Hyun;Chun, Sang-Jin;Yoon, Seung-Lak
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.505-516
    • /
    • 2009
  • The effects of wood species, particle size of wood flours and coupling treatment on the mechanical properties of wood plastic composites (WPC) are investigated in this study. Chemical components of wood flour from 3 different wood species were analyzed by the chemical analysis. Wood flours of 40~60 mesh and 80~100 mesh were manufactured from Larix (Larix kaempferi Lamb.), Quercus (Quercus accutisima Carr.), and Maackia (Maackia amuresis Rupr. et Maxim). The wood flours were reinforced into polypropylene (PP) by melt compounding and injection molding, then tensile, flexural, and impact strength properties were analyzed. The order of alpha-cellulose content in wood is Quercus (43.6%), Maackia (41.3%) and Larix (36.2%). The order of lignin content in wood is Larix (31.6%), Maackia (24.7%), and Quercus accutisima (24.4%). The content of extractives in wood is in the order of Larix (8.5%), Maackia (4.4%), and Quercus accutisima (3.9%). As the content of alpha-cellulose increases and the lignin and extractives decreases, tensile and flexural strengths of the WPC increase. At the same loading level of wood flours, the smaller particle size (80~100 mesh) of wood flours showed highly improved tensile and flexural strengths, compared to the larger one (40~60 mesh). The impact strength of the WPC was not significantly affected by the wood species, but the wood flours of larger particle size showed better impact strengths. The addition of maleated polypropylene (MAPP) provided the highly improved tensile, flexural and impact strengths. Morphological analysis shows improved interfacial bonding with MAPP treatment for the composites.

Deposition of ZnO Thin Films by RF Magnetron Sputtering and Cu-doping Effects (RF 마그네트론 스퍼터링에 의한 ZnO박막의 증착 및 구리 도우핑 효과)

  • Lee, Jin-Bok;Lee, Hye-Jeong;Seo, Su-Hyeong;Park, Jin-Seok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.12
    • /
    • pp.654-664
    • /
    • 2000
  • Thin films of ZnO are deposited by using an RF magnetron sputtering with varying the substrate temperature(RT~39$0^{\circ}C$) and RF power(50~250W). Cu-doped ZnO(denoted by ZnO:Cu) films have also been prepared by co-spputtering of a ZnO target on which some Cu-chips are attached. Different substrate materials, such as Si, $SiO_{2}/Si$, sapphire, DLC/Si, and poly-diamond/Si, are employed to compare the c-axial growth features of deposited ZnO films. Texture coefficient(TC) values for the (002)-preferential growth are estimated from the XRD spectra of deposited films. Optimal ranges of RF powers and substrate temperatures for obtaining high TC values are determined. Effects of Cu-doping conditions, such as relative Cu-chip sputtering areas, $O_{2}/(Ar+O_{2})$ mixing ratios, and reactor pressures, on TC values, electrical resistivities, and relative Cu-compositions of deposited ZnO:Cu films have been systematically investigated. XPS study shows that the relative densities of metallic $Cu(Cu^{0})$ atoms and $CuO(Cu^{2+})$-phases within deposited films may play an important role of determining their electrical resistivities. It should be noted from the experimental results that highly resistive(> $10^{10}{\Omega}cm$ ZnO films with high TC values(> 80%) can be achieved by Cu-doping. SAW devices with ZnO(or Zn):Cu)/IDT/$SiO_{2}$/Si configuration are also fabricated to estimate the effective electric-mechanical coupling coefficient($k_{eff}^{2}$) and the insertion loss. It is observed that the devices using the Cu-doped ZnO films have a higher $k_{eff}^{2}$ and a lower insertion loss, compared with those using the undoped films.

  • PDF

V-band CPW 3-dB Directional Coupler using Tandem Structure (Tandem구조를 이용한 V-band용 CPW 3-dB 방향성 결합기)

  • Moon Sung-Woon;Han Min;Baek Tae-Jong;Kim Sam-Dong;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.7 s.337
    • /
    • pp.41-48
    • /
    • 2005
  • We design and fabricate 3-dB tandem directional coupler using the coplanar waveguide structure which is applicable to balanced amplifiers and mixers for 60 GHz wireless local area network system. The coupler comprises the multiple-sectional parallel-coupled lines to facilitate the fabrication process, and enable smaller device size and higher directivity than those of the conventional 3-dB coupler employing the edge-coupled line. In this study, we adopt the structure of two-sectional parallel-coupled lines of which each single-coupled line has a coupling coefficient of -8.34 dB and airbridge structure to monolithically materialize the uniplanar coupler structure instead of using the conventional multilayer or bonded structure. The airbridge structure also supports to minimize the parasitic components and maintain desirable device performance in V-band (50$\~$75 GHz). The measured results from the fabricated couplers show couplings of 3.S$\~$4 dB and phase differences of 87.5$^{\circ}{\pm}1^{\circ}$ in V-band range and show directivities higher than 30 dB at a frequency of 60 GHz.

Controller Design and Validation of Radial Active Magnetic Bearing Systems Considering Dynamical Changes Due To Rotational Speeds (회전속도에 따른 동역학적 변화를 고려한 반경방향 능동 자기베어링 시스템의 제어기 설계 및 검증)

  • Jeong, Jin Hong;Yoo, Seong Yeol;Noh, Myounggyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.925-932
    • /
    • 2014
  • If a rotor possesses a high gyroscopic coupling or the running speed is high, the dynamical changes in the rotor become prominent. When active magnetic bearings are used to support such rotors, it is necessary for the bearing controller to take these dynamical changes into consideration. Independent-axis controllers, which are the most commonly used, modulate the bearing force solely based on the sensor output of the same axis. However, this type of controller has difficulties in overcoming the dynamical changes. On the other hand, mixed-axis controllers transform the sensor output into components corresponding to the vibrational modes. A separate controller can then be designed for each vibrational mode. In this way, the controller can be designed based on the dynamics of the rotor. In this paper, we describe a design process for a mixed-axis controller that uses a detailed mathematical model of the system. The performance of the controller is evaluated based on the ISO sensitivity requirements and unbalance response, while considering the change in the system dynamics due to the running speed.

FADIS : An Integrated Development Environment for Automatic Design and Implementation of FLC (FADIS : 퍼지제어기의 설계 및 구현 자동화를 위한 통합 개발환경)

  • 김대진;조인현
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.5
    • /
    • pp.83-97
    • /
    • 1998
  • This paper developes an integrated environment CAD system that can design and implement an accurate and cost-effective FLC automatically. For doing this, an integrated development environment (IDE) (called FADIS; FLC Automatic Design and Implementation Station) is built by the seemless coupling of many existing. CAD tools in an attempt to the FADIS performs various functions such that (1) i~utomatically generate the VHDL components appropriate for the proposed FLC architecture from the various design parameters (2) simulate the generated VHDL code on the Synopsys's VHDL Simulator, (3) automatically compiler, (4) generate the optimized, placed, and routed rawbit files from the synthesized modules by Xilinx's XactStep 6.0, (5) translate the rawbit files into the downloadable ex- [:cution reconfigurable FPGA board (VCC's EVCI), and (7) continuously monitor the control status graphically by communicating the FLC with the controlled target via S-bus. The developed FADIS is tested for its validity by carrying out the overall procedures of designing and implementing the FLC required for the truck-backer upper control, the reduction of control execution time due to the controller's FPGA implementation is verified by comparing with other implementations.

  • PDF

Design and Fabrication of APD-FET Module for 2.5 Gbps Optical Communicating System (광통신용 APD-FET 광수신모듈 설계 및 제작)

  • 강승구;송민규;윤형진;박경현;박찬용;박형무;윤태열;이창희;심창섭
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.166-172
    • /
    • 1994
  • The fiber optic receiver, ETRI APD-FET 1.0, is developed for the application of optical communication. This fiber optic receiver includes PD sub-module and pre-amplifier case. A single lens system is introduced for the PD sub-module. The sub-module consists of the avalenche photodiode(APD), GRIN rod lens, and a single mode fiber. The above components are enclosed into the stainless steel 304L housings. By bevelling the fiber end, the single mode fiber provides less than ~ 28 dB of optical return loss. The area of image focus is controlled by adjusting the length of spacer located in-between the fiber and the GRIN rod lens. The laser welding technique is applied to achieve the maximum coupling efficiency for the joining of each housing. In the pre-amplifier case, GaAs FET pre-amplifier workes for photocurrent amplification and the thermister is mounted to control the APD bias. The performance of ETRI APD-FET1.0 shows the sensitivity of - 30.3 dBm at $10^{-10}$ BER(bit error rate) and 2.5 Gbps optical random signal of $2^{23}-1$ word length. The fiber optic receiver is one of the essensial parts of the transmission module for B-ISDN. Also, the above optical packaging technology will be adapted for the developement of 10 Gbps transmission application 2.5 Gbps 5 Gbps

  • PDF

Study for Characteristic of Frictional Heat Transfer in Rotating Brake System (회전을 고려한 브레이크 디스크의 마찰열전달 연구)

  • Nam, Jiwoo;Ryou, Hong Sun;Cho, Seong Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.817-822
    • /
    • 2017
  • The braking system is one of the most important components in vehicles and machines. It must exert a reliable braking force when they are brought to a halt. Generally, frictional heat is generated by converting kinetic energy into heat energy through friction. As the kinetic energy is converted into heat energy, high temperature heat is generated which affects the mechanical behavior of the braking system. Frictional heat affects the thermal expansion and friction coefficient of the brake system. If the temperature is not controlled, the brake performance will be decreased. Therefore, it is important to predict and control the heat generation of the brake. Various numerical analysis studies have been carried out to predict the frictional heat, but they assumed the existence of boundary conditions in the numerical analysis to simulate the frictional heat, because the simulation of frictional heat is difficult and time consuming. The results were based on the assumption that the frictional heat is different from the actual temperature distribution in a rotating brake system. Therefore, the reliability of the cooling effect or thermal stress using the results of these studies is insufficient. In order to overcome these limitations and establish a simulation procedure to predict the frictional heat, this study directly simulates the frictional heat generation by using a thermal-structure coupling element. In this study, we analyzed the thermo-mechanical behavior of a brake model, in order to investigate the thermal characteristics of brake systems by using the Finite Element method (FEM). This study suggests the necessity to directly simulate the frictional heating and it is hoped that it can provide the necessary information for simulations.

The intrinsic instabilities of fluid flow occured in the melt of Czochralski crystal growth system

  • Yi, Kyung-Woo;Koichi Kakimoto;Minoru Eguchi;Taketoshi Hibiya
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.179-200
    • /
    • 1996
  • The intrinsic instabilities of fluid flow occurred in the melt of the Czochralski crystal growth system Czochralski method, asymmetric flow patterns and temperature profiles in the melt have been studied by many researchers. The idea that the non-symmetric structure of the growing equipment is responsible for the asymmetric profiles is usually accepted at the first time. However further researches revealed that some intrinsic instabilities not related to the non-symmetric equipment structure in the melt could also appear. Ristorcelli had pointed out that there are many possible causes of instabilities in the melt. The instabilities appears because of the coupling effects of fluid flow and temperature profiles in the melt. Among the instabilities, the B nard type instabilities with no or low crucible rotation rates are analyzed by the visualizing experiments using X-ray radiography and the 3-D numerical simulation in this study. The velocity profiles in the Silicon melt at different crucible rotation rates were measured using X-ray radiography method using tungsten tracers in the melt. The results showed that there exits two types of fluid flow mode. One is axisymmetric flow, the other is asymmetric flow. In the axisymmetric flow, the trajectory of the tracers show torus pattern. However, more exact measurement of the axisymmetrc case shows that this flow field has small non-axisymmetric components of the velocity. When fluid flow is asymmetric, the tracers show random motion from the fixed view point. On the other hand, when the observer rotates to the same velocity of the crucible, the trajectory of the tracer show a rotating motion, the center of the motion is not same the center of the melt. The temperature of a point in the melt were measured using thermocouples with different rotating rates. Measured temperatures oscillated. Such kind of oscillations are also measured by the other researchers. The behavior of temperature oscillations were quite different between at low rotations and at high rotations. Above experimental results means that the fluid flow and temperature profiles in the melt is not symmetric, and then the mode of the asymmetric is changed when rotation rates are changed. To compare with these experimental results, the fluid flow and temperature profiles at no rotation and 8 rpm of crucible rotation rates on the same size of crucible is calculated using a 3-dimensional numerical simulation. A finite different method is adopted for this simulation. 50×30×30 grids are used. The numerical simulation also showed that the velocity and flow profiles are changed when rotation rates change. Futhermore, the flow patterns and temperature profiles of both cases are not axisymmetric even though axisymmetric boundary conditions are used. Several cells appear at no rotation. The cells are formed by the unstable vertical temperature profiles (upper region is colder than lower part) beneath the free surface of the melt. When the temperature profile is combined with density difference (Rayleigh-B nard instability) or surface tension difference (Marangoni-B nard instability) on temperature, cell structures are naturally formed. Both sources of instabilities are coupled to the cell structures in the melt of the Czochralski process. With high rotation rates, the shape of the fluid field is changed to another type of asymmetric profile. Because of the velocity profile, isothermal lines on the plane vertical to the centerline change to elliptic. When the velocity profiles are plotted at the rotating view point, two vortices appear at the both sides of centerline. These vortices seem to be the main reason of the tracer behavior shown in the asymmetric velocity experiment. This profile is quite similar to the profiles created by the baroclinic instability on the rotating annulus. The temperature profiles obtained from the numerical calculations and Fourier transforms of it are quite similar to the results of the experiment. bove esults intend that at least two types of intrinsic instabilities can occur in the melt of Czochralski growing systems. Because the instabilities cause temperature fluctuations in the melt and near the crystal-melt interface, some defects may be generated by them. When the crucible size becomes large, the intensity of the instabilities should increase. Therefore, to produce large single crystals with good quality, the behavior of the intrinsic instabilities in the melt as well as the effects of the instabilities on the defects in the ingot should be studied. As one of the cause of the defects in the large diameter Silicon single crystal grown by the

  • PDF