• 제목/요약/키워드: Coupling coil

검색결과 140건 처리시간 0.045초

근거리 무선 전력 전송을 위한 평형 증폭기 구조의 10MHz 10W급 전력원 설계 (Design of the 10MHz and 10W Power Source for Short Distance Wireless Power Transmission)

  • 박동훈;김귀성;임은천;박혜미;이문규
    • 전기학회논문지
    • /
    • 제61권3호
    • /
    • pp.437-441
    • /
    • 2012
  • In this paper, we have designed and manufactured 10MHz power source for the application of short distance wireless power transmission. The designed power source consists of a DDS(direct digital synthesizer) signal generator, a buffer driver and a balanced power amplifier. Short range wireless power transmission is usually carried out by near-field inductive coupling between source and load. The distance variation between source and load gives rise to the change of load impedance of power amplifier, which has effect on the operation of power amplifier. To overcome this problem due to load variation of power amplifier, we have adopted the balanced power amplifier using the quadrature hybrid implemented by lumped capacitors and a mutually coupled coil. The experiment results show the above 40dBm output power, frequency range of 9 to 11MHz, and total DC power consumption of 36W.

진공차단부에서 발생하는 확산형 아크 수치해석 (Numerical Study on a Diffused-mode Arc within a Vacuum Interrupter)

  • 조성훈;황정훈;이종철;최명준;권중록;김윤제
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.479-482
    • /
    • 2008
  • In order to more closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and hydrodynamic fields, simultaneously. In this study, the thermal-fluid characteristics of high current vacuum arcs were calculated by a commercial multiphysics package, ANSYS, in order to obtain Joule heat, Lorentz force and the interactions with flow variables. We assumed the diffused-mode arc within an AMF vacuum interrupter. It was found with four different currents that the temperature distributions on the anode surface are diffused uniformly without concentration in 7kA for both types (cup and coil-type). But the arc plasma transition and an increase of thermal flux density for increasing the applied current have caused the change of temperature distributions on the anode surface. We should need further studies on the two-way coupling method and radiation model for arc plasmas in order to accomplish the advanced analysis method for multiphysics.

  • PDF

Crystallization Behavior of Polymers as Viewed from the Molecular Level

  • Tashiro, Kohji;Sasaki, Sono;Ueno, Yoko;Yoshioka, Akiko;Kobayashi, Masamichi
    • Macromolecular Research
    • /
    • 제8권3호
    • /
    • pp.103-115
    • /
    • 2000
  • The structural changes viewed from the molecular level have been investigated for the isothermal crystallization phenomena of polyethylene (PE) and the solvent-induced crystallization phenomenon of syndiotactic polystyrene (sPS) glassy sample. The data, which were collected by the time-resolved measurements of Fourier-transform infrared spectra, Raman spectra, synchrotron-sourced small-angle X-ray scattering, wide-angle X-ray scattering, and so on, were combined together to extract the detailed structural information in these phase transition phenomena. In the case of PE, the isothermal crystallization from the melt to the orthorhombic form was found to occur via the conformationally-disordered trans chain form, followed by the formation of the lamellar stacking structure of regular orthorhombic-type crystals. In the case of sPS, the amorphous chains in the glassy sample were found to enhance the mobility through the interaction with the injected solvent molecules, which act as a trigger to cause the conformational ordering from the random coil to the regular T$_2$G$_2$-type helical form. The thus created short helical segments were found to grow into longer helices, which gathered together to form the crystallites, as revealed by the organized coupling of the infrared, Raman and X-ray scattering data.

  • PDF

고주파 유도 단일패스 선상가열 유기 후판 성형 기술 (Deformation Technology for Thick Plate Using Single Pass Line Heating by High Frequency Induction Heating)

  • 이광석;엄득하;김창원;변상윤;손동환;공경열;김병민;이정환
    • 소성∙가공
    • /
    • 제20권6호
    • /
    • pp.439-449
    • /
    • 2011
  • The temperature distribution and subsequent permanent deformation of SS400 carbon steel plate subjected to an induction-based line heating process were studied by a numerical method involving coupled 3-D electromagnetic-thermal-structural analysis. The numerical study revealed that the amount of permanent deformation is strongly related to the Joule loss caused by such process conditions as input power and moving speed of the heat source. To validate the numerical analysis results, line heating experiments were carried out with a high frequency(HF) induction heating(IH) equipment capable of bending thick plate with the moving accuracy of ${\pm}0.1mm$ in heating coil position. The amount of permanent deformation increased with decreasing moving speed and increasing input power.

A Sensing System of the Halbach Array Permanent Magnet Spherical Motor Based on 3-D Hall Sensor

  • Li, Hongfeng;Liu, Wenjun;Li, Bin
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.352-361
    • /
    • 2018
  • This paper proposes a sensing system of the Halbach array permanent magnet spherical motor(PMSM). The rotor position can be obtained by solving three rotation angles, which revolves around 3 reference axes of the stator. With the development of 3-D hall sensor, the position identification problem of the Halbach array PMSM based on rotor magnetic field is studied in this paper. A nonlinear and serious coupling relationship between the rotation angles and the measured magnetic flux density is established on the basis of the rotation transformation theory and the magnetic field model. In order to get rid of the influence on position detection caused by the harmonics of rotor magnetic field and the stator coil magnetic field, a sensor location combination scheme is proposed. In order to solve the nonlinear equation fast and accurately, a new position solution algorithm which combines the merits of gradient projection and particle swarm optimization(PSO) is presented. Then the rotation angles are obtained and the rotor position is identified. The validity of the sensing system is verified through the simulation.

둥근형 무전극 형광램프의 자계 분포 특성 (Magnetic Field Distribution Characteristics of Ring-Shaped Electrodeless Fluorescent Lamp)

  • 최용성;조재철;이경섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 광주전남지부
    • /
    • pp.53-57
    • /
    • 2006
  • In this paper, maxwell 3D finite element analysis program (Ansoft) was used to obtain electromagnetic properties associated with the coil and nearby structures. The electromagnetic emitting properties were presented by 3D simulation software operated at 250 kHz and some specific conditions. The electromagnetic field in the ferrite core was shown to be high and symmetric. An LS-100 luminance meter and a Darsa-2000 spectrum analyzer were used in the experiment. According to data on the lamp tested using high magnetic field ferrite, the optical and thermal wave fields were shown to be high around the ring-shaped electrodeless fluorescent lamp. The optical or light field was high at the center of the bulb rather than around the ferrite core. The light conditions of the bulb were assumed to be complex, depending on the condition of the filler gas, the volume of the bulb, and the frequency of the inverter. Our results have shown coupling between the gas plasma and the field of the light emitted to be nonlinear.

  • PDF

인체 삽입용 LC 공진형 혈압 센서 디자인 및 제작 (Design and Fabrication of Implantable LC Resonant Blood Pressure Sensor)

  • 김진태;김성일;정연호
    • 한국전기전자재료학회논문지
    • /
    • 제26권3호
    • /
    • pp.171-176
    • /
    • 2013
  • In this paper, we present a MEMS (micro-electro-mechanical system) implantable blood pressure sensor which has designed and fabricated with consideration of size, design flexibility, and wireless detection. Mechanical and electrical characterizations of the sensor were obtained by mathematical analysis and computer aided simulation. The sensor is composed of two coils and a air gap capacitor formed by separation of the coils. Therefore, the sensor produces its resonant frequency which is changed by external pressure variation. This frequency movement is detected by inductive coupling between the sensor and an external antenna coil. Theoretically analyzed resonant frequency of the sensor under 760 mmHg was calculated to 269.556 MHz. Fused silica was selected as sensor material with consideration of chemical and electrical reaction of human body to the material. $2mm{\times}5mm{\times}0.5mm$ pressure sensors fitted to radial artery were fabricated on the substrates by consecutive microfabrication processes: sputtering, etching, photolithography, direct bonding and laser welding. Resonant frequencies of the fabricated sensors were in the range of 269~284 MHz under 760 mmHg pressure.

Solution Structure of the D/E Helix Linker of Skeletal Troponin-C: As Studied by Circular Dichroism and Two-Dimensional NMR Spectroscopy

  • 이원태;G. M. Anatharamaiah;Herbert C. Cheung;N. Rama Krishna
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권1호
    • /
    • pp.57-62
    • /
    • 1998
  • We have synthesized a 17-residue peptide with the amino acid sequence RQMKEDAKGKSEEELAD corresponding to residues 84-100 of chicken skeletal troponin C. This stretch of the protein sequence is in the middle one-third of the 32-residue 9-turn α-helix that connects the two globular domains of the dumbell-shaped molecule and includes the D/E linker helix. We describe here the solution conformation of the helix linker as studied by circular dichroism (CD) and two-dimensional nuclear magnetic resonance (2-D NMR) spectroscopy. The NOE connectivities together with the vicinal $^3J_{N{\alpha}}$ coupling constants suggest that the peptide exists in a fast conformational equilibrium among several secondary structure: a nascent helix near the N-terminus, a helix, and a substational population of extended and random coil forms. In addition, two interresidue α-α NOEs are observed suggesting a bent structure with a bend that includes the single glycine in position 92. These results are consistent with the ideas that in neutral solution the D/E linker region of the central helix in troponin C can adopt a helical conformation and the central helix may have a segmental flexibility around Gly 92.

Measurement of magnetization loss according to the winding pitch of CORC®

  • Han, Jinwoo;Choi, Kyeongdal;Kim, Woo-Seok;Lee, Ji-Kwang
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권4호
    • /
    • pp.25-29
    • /
    • 2021
  • For the application of HTS wire to AC power equipment, a conductor with high current capacity and low loss is required. CORC®, one of the high-current conductors manufactured using several HTS wires, is made by winding the wires in a spiral on a cylindrical former. Because the magnetization loss of a CORC® conductor depends on the degree of magnetic coupling between the wires constituting the CORC®, it is necessary to know the value of the magnetization loss of the CORC® itself. In order to obtain an accurate loss value, it is necessary to know the effect of the ratio of the winding pitch of the CORC® conductor in the pickup coil region sampling the magnetization loss signal. To confirm this effect, we prepare CORC® samples having various winding pitches, and measure and compare the magnetization losses. In addition, the magnetization loss was measured while rotating the CORC® samples and it was examined whether there was a difference in the magnetization loss according to the rotation.

고엔탈피 열유동 발생용 고주파 유도결합 플라즈마 토치의 최적 설계변수 해석 (Optimum design analysis of ICP(Inductively Coupled Plasma) torch for high enthalpy thermal plasma flow)

  • 서준호
    • 한국항공우주학회지
    • /
    • 제40권4호
    • /
    • pp.316-329
    • /
    • 2012
  • 초음속 플라즈마 풍동 등, 항공우주 응용을 위한 고순도, 고엔탈피 열유동 발생 장치로서 널리 쓰이고 있는 유도결합 플라즈마 토치에 대해, 전기회로 이론과 결합된 해석적 및 수치해석적 자기유체역학 모델을 이용하여 토치 설계변수(주파수 $f$, 가둠관 반지름 $R$ 및 코일 감은수 $N$) 변화에 따른 전기적 특성 변수(등가 저항, 등가 인덕턴스 및 결합효율)의 거동을 추적함으로써 최적 설계 변수해석을 수행하였다. 계산 결과, 등가저항은 $f$, $R$$N$이 증가함에 따라 커지는 반면, 등가 인덕턴스는 $f$가 증가할수록 작아지지만 $R$$N$의 증가에 대해서는 커지는 경향이 있음을 파악하였다. 이로부터, 10 kW 급 고주파 유도결합 플라즈마 토치의 경우, 결합효율을 극대화시키는 최적의 주파수, 가둠관 반지름 및 코일 감은수의 범위를 각각 $f$=4~6 MHz, $R$=17~25 mm 및 $N$=3~4 로 추정하였다.