• Title/Summary/Keyword: Coupling Stiffness

Search Result 283, Processing Time 0.024 seconds

A Study on the Coupled Shaft-torsional and Blade-bending Vibrations in the Flexible Rotor-coupling-blade System (유연체 로터-커플링-블레이드 시스템의 로터 축과 블레이드의 연성 진동에 관한 연구)

  • Oh, Byung-Young;Lee, Sun-Sook;Yoon, Hyungwon;Cha, Seog-Ju;Na, Sungsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1023-1029
    • /
    • 2005
  • In this paper, a dynamic model for the rotor shaft-coupling-blade system was developed. The blades are attached to a disk and driven by an electric motor shaft which is flexible in torsion. We assumed that the shaft torsional flexibility was lumped in the flexible coupling which is usually adopted in rotor systems. The Lagrangian approach with the small deformation theory for both blade-bending and shaft-torsional deformations was employed for developing the equation of the motion. The Assumed Modes Method was used for estimating the blade transverse deflection. The numerical results highlight the effects of both structural damping of the system and the torsional stiffness of the flexible coupling to the dynamic response of the blade. The results showed strong coupling between the blade bending and shaft torsional vibrations in the form of inertial nonlinearity, stiffness hardening and softening.

On modeling coupling beams incorporating strain-hardening cement-based composites

  • Hung, Chung-Chan;Su, Yen-Fang
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.565-583
    • /
    • 2013
  • Existing numerical models for strain-hardening cement-based composites (SHCC) are short of providing sufficiently accurate solutions to the failure patterns of coupling beams of different designs. The objective of this study is to develop an effective model that is capable of simulating the nonlinear behavior of SHCC coupling beams subjected to cyclic loading. The beam model proposed in this study is a macro-scale plane stress model. The effects of cracks on the macro-scale behavior of SHCC coupling beams are smeared in an anisotropic model. In particular, the influence of the defined crack orientations on the simulation accuracy is explored. Extensive experimental data from coupling beams with different failure patterns are employed to evaluate the validity of the proposed SHCC coupling beam models. The results show that the use of the suggested shear stiffness retention factor for damaged SHCC coupling beams is able to effectively enhance the simulation accuracy, especially for shear-critical SHCC coupling beams. In addition, the definition of crack orientation for damaged coupling beams is found to be a critical factor influencing the simulation accuracy.

Compliance Analysis for Effective Peg-In-Hole Task (팩인홀 작업을 효율적으로 수행하기 위한 컴플라이언스 해석)

  • Kim, Byeong-Ho;Lee, Byeong-Ju;Seo, Il-Hong;O, Sang-Rok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.181-188
    • /
    • 2000
  • This paper deals with an analysis of the compliance characteristic for effective peg-in-hole task using robot hand without inter-finger coupling. We first observe the fact that some of coupling stiffness elements cannot be planned arbitrary. next we classify the task of inserting a peg-in-a-hole into two contact styles between the peg and the hole. Then we analyze the conditions of the specified stiffness matrix in the operational space to successfully and more effectively achieve the give peg-in-hole task for each case. It is concluded that the location of compliance center on the peg and the coupling stiffness element existing between the translational and the rotational direction play important roles for successful peg-in-hole task. Simulation results are included to verify the feasibility of the analytic results.

  • PDF

Modal Analysis of a Rotating Multi-Packet Pre-twisted Blade System (초기 비틀림각을 갖는 회전하는 다중 패킷 블레이드 시스템의 고유 진동 해석)

  • Kim, Min-Kwon;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.393-399
    • /
    • 2008
  • A modeling method for the modal analysis of a pre-twisted multi-packet blade system undergoing rotational motion is presented in this paper. Blades are idealized as pre-twisted cantilever beams that are fixed to a rotating disc. The stiffness coupling effects between blades due to the flexibilities of the disc and the shroud are modeled with discrete springs. The coupling effect between chordwise and flapwise bending deflection is also considered. Hybrid deformation variables are employed to derive the equations of motion. To obtain more general information, the equations of motion are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters and the number of packets as well as blades on the modal characteristics of the rotating multi-packet pre-twisted blade system are investigated with some numerical examples.

  • PDF

Secondary buckling analysis of spherical caps

  • Kato, Shiro;Chiba, Yoshinao;Mutoh, Itaru
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.715-728
    • /
    • 1997
  • The aim of this paper is to investigate the secondary buckling behaviour and mode-coupling of spherical caps under uniformly external pressure. The analysis makes use of a rotational finite shell element on the basis of strain-displacement relations according to Koiter's shell theory (Small Finite Deflections). The post-buckling behaviours after a bifurcation point are analyzed precisely by considering multi-mode coupling between several higher order harmonic wave numbers: and on the way of post-buckling path the positive definiteness of incremental stiffness matrix of uncoupled modes is examined step by step. The secondary buckling point that has zero eigen-value of incremental stiffness matrix and the corresponding secondary mode are obtained, moreover, the secondary post-buckling path is traced.

Contribution of Reinforced Concrete Floor Slabs to Lateral Behavior of Tall Buildings

  • Rehmanjee, Yasmin;Leslie, Benjamin;Lamianski, Dmitri;Chafart, Manuel
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.1
    • /
    • pp.25-29
    • /
    • 2022
  • This paper focuses on how the coupling of the columns and walls through the structural slab contributes to the overall stiffness and strength of lateral systems. The rationale and procedures behind the design approach, which may offer a shift from more conventional assumptions made regarding compatibility and connectivity of gravity and lateral structural systems, will be introduced. The impacts on serviceability and strength design will be discussed, and observations on key design and analysis approaches will be featured. Mass and stiffness assumptions will also be reviewed. A case study on the topic will be presented describing implementation of slab coupling into engineering of a building project.

Vibration Analysis of Rotating Cantilever Beams Considering the Elastic Foundation Effect (지지부 탄성효과를 고려한 회전 외팔 보의 진동해석)

  • 윤경재;유홍희
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1022-1028
    • /
    • 2000
  • This paper presents a modeling method for the vibration analysis of rotating cantilever beams considering the elastic foundation effect. Mass and stiffness matrices are derided explicitly by considering coupling effect between stretching and bonding motion. Numerical results show that the bending direction elastic foundation stiffness influences the vibration characteristics significantly in practical range of beam configuration. The ranges of elastic foundation stiffness to avoid the dynamic buckling are also presented. The method presented in this paper can be used to predict the variations of natural frequencies of rotating cantilever beams with elastically restrained root.

  • PDF

A study on 1D modeling techniques for collision analysis of train coupling (열차의 1차원 연결 해석 모델링 기법 연구)

  • Kim, Hyung-Jun;Koo, Jeong-Seo
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1203-1209
    • /
    • 2006
  • One dimensional collision analysis is often used to simulate a train-to-train coupling or collision accident. But there are various numerical modeling techniques utilized for dynamic models of rolling stocks such as a lumped-spring-mass model or a bar-mass model. In rolling stock industries, a lumped-spring-mass model is mainly applied without consideration of bogie attachments separately. In this case, a dynamic stiffness coefficient is introduced to compensate the overestimated car mass effects due to the linkage stiffness of bogies and seats. In this paper, the effects of dynamic stiffness coefficients and wheel-rail friction coefficients were studied by simulating a bar-mass model with bogie attachments separately.

  • PDF

Cyclic Behavior of Reinforced Concrete Coupling Beams with Bundled Diagonal Reinforcement (묶음 대각철근을 적용한 철근콘크리트 연결보의 이력거동 평가)

  • Han, Sang Whan;Kwon, Hyun Wook;Shin, Myung Su;Lee, Ki Hak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.117-124
    • /
    • 2014
  • Diagonal reinforced coupling beam of coupled shear walls can provide sufficient strength and stiffness to resist lateral force. However, the reinforcement details for coupling beams required by ACI 318 (2011) are difficult to construct because of the reinforcement congestion and confined interior area. This study presents experimental results about the seismic performance of coupling beams having bundled diagonal reinforcement to improve the workability. Experiments were conducted using half scaled precast coupling beams having an aspect ratio of 2.0. It was observed that the bundled diagonal reinforced coupling beams can develop seismic performance similar to the coupling beams with requirement details specified in ACI 318 (2011).

A Study on Development the Dynamic Model to Misaligned Gear Coupling (I) - The Focus on Development of Dynamic Model to n Gear Coupling (정렬불량을 가진 기어 커플링의 동역학적 모델 개발에 관한 연구 (I) - 기어 커플링의 동적모델 구축을 중심으로-)

  • Kim, Byung-Ok;Kim, Yong-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.857-863
    • /
    • 2003
  • In rotating machinery, unbalance and misalignment are major concerns in vibration. Unbalance can be eliminated by balancing procedure to some degree. but little work has been done on the vibrations that occur in a misaligned rotor system. Currently, no generalized theoretical model based on a rotor system with flexible coupling is available to describe the vibrations caused by misalignment. As a part of systematic investigation on the misalignment, first of all, the study on flexible coupling with misalignment should be preceded. In this study, the geometry and reaction force and moment of a gear coupling with misalignment was investigated, also the theoretical model of a gear coupling with misalignment was presented by using the relationship between geometry and moment of gear coupling. It is expected that the proposed procedure can be applied to derive the theoretical model of other couplings.