• 제목/요약/키워드: Coupling Element

검색결과 805건 처리시간 0.026초

고속 디지털 회로 PCB 상의 EMI 해석 (EMI Analysis on High Speed Digital Circuite)

  • 김태홍;이현진;임영석
    • 대한전자공학회논문지TC
    • /
    • 제42권12호
    • /
    • pp.159-164
    • /
    • 2005
  • 최근 정보량의 증가로 고속 디지털 회로를 요구하고 있다. 이에 따라 소형 고주파 회로에 전자기 특성이 중요하게 대두되었다. 그래서 불완전한 그라운드 상에 PCB 회로의 고속 디지털 전송라인에 대한 신호 집적도와 두 평행 선로 사이의 결합특성을 3차원 전자기 해석법인 시간영역 유한차분법을 이용하여 해석하였다. FDTD 시뮬레이션 결과는 상용 회로 소프트웨어 툴인 ADS 시뮬레이터와 비교하였고, 집중 소자 모델링, 주파수에 따른 슬롯에 의한 전자파의 방사 등을 해석하였다. 결과로써 마이크로스트립 선로 아래 슬롯이 있는 경우 신호의 전송에 큰 영향을 끼치는 것을 알 수 있다.

공심 코일형 리니어 DC 모터의 설계 및 동특성 해석 (Design and Dynamic Analysis of Air-core Coil type Linear DC Motor)

  • 강규홍;홍정표;김규탁;하근수;정중기;임태빈
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권3호
    • /
    • pp.165-171
    • /
    • 2000
  • This paper proposes a technique to design of air-core type Linear DC Motor(LDM) by using Equivalent Magnetizing Current(EMC) method and has performed its dynamic analysis. The magnetic flux density differ in accordance with airgap position due to difference of mechanical and magnetic air gap length and the coil shape has an influence on the thrust. Therefore, the analysis of magnetic field due to the magnets is carried out by EMC. The phenomena according to the various coil various coil shape under the same Magneto Motive Force(MMF) has been analyzed and its result is applied to the design process. The appropriateness of the proposed technique is confirmed by Finite Element Method(FEM) and its dynamic analysis is carried out from the coupling of the electrical circuit equation and mechanical kinetic equation.

  • PDF

마그네틱 기어의 극수 변화에 따른 효율 및 손실 분석 (Analysis of Efficiency and Loss due to Number of Poles in Magnetic Gears)

  • 김승현;김동욱;이도엽;김찬승;김용재
    • 한국전자통신학회논문지
    • /
    • 제13권5호
    • /
    • pp.1023-1028
    • /
    • 2018
  • 직접 접촉 방식의 기계적인 결합을 사용하는 기어는 접촉 마찰로 인한 소음, 진동, 발열 등의 문제가 지속적으로 제기되어왔기 때문에, 비접촉 자기(magnetic)결합을 이용한 마그네틱 기어(magnetic gear)가 제안되었다. 마그네틱 기어에 대한 연구 중 동일한 기어비에서 극수에 따라 손실의 차이가 발생함을 확인하였으며, 철손과 영구자석 와류손이 극수에 따라 일정한 경향성을 보일 것으로 예상되어 연구를 진행하였다. 본 논문에서는 마그네틱 기어의 극수에 따른 경향성을 확인하고 구체화하여 마그네틱 기어의 효율 개선 설계의 기반을 마련하였다.

Structural Dynamic Analysis of a Space Launch Vehicle using an Axisymmetric Two-dimensional Shell Element

  • Sim, JiSoo;Lee, SangGu;Kim, JunBeom;Shin, SangJoon;Park, SeungSoo;Ohm, WonSuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권3호
    • /
    • pp.485-497
    • /
    • 2017
  • The pogo phenomenon refers to a type of multidiscipline-related instability found in space launch vehicles. It is caused by coupling between the fuselage structure and other structural propulsion components. To predict the pogo phenomenon, it is essential to undertake adequate structural modeling and to understand the characteristics of the feedlines and the propulsion system. To do this, a modal analysis is conducted using axisymmetric two-dimensional shell elements. The analysis is validated using examples of existing launch vehicles. Other applications and further plans for pogo analyses are suggested. In addition, research on the pogo phenomenon of Saturn V and the space shuttle is conducted in order to constitute a pogo stability analysis using the results of the present modal analysis.

Taguchi Method를 이용한 모바일 폰용 마이크로스피커의 음향 특성 향상 설계 (Application of Taguchi Method to Robust Design of Acoustic Performance in Mobile Phones)

  • 이홍주;황건용;황상문;권중학;김태순
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.493-496
    • /
    • 2005
  • With the growth in electronics and the remarkable advance in wireless communication technology, mobile devices, such as mobile phones and PDAs are incessantly improved in their diverse functional performance. Lighter weight and smaller size has been gradually accomplished by recent circuit integration technology resulting in rapid growth in the number of mobile phone subscribers. Driven by customer demand, recent mobile devices are fully capable of realizing a variety of dazzling multimedia effects powered by electro-acoustic parts that have become one of the generic components. However, this paper also presents an oval micro-speaker, that is expected to show an excellent performance within limited space of mobile phone, and its performance design has been suggested as well. Finally, a statistical approach to achieve high characteristic and performance is suggested by Taguchi method to identify a certain relationship between a mobile phone and a micro-speaker.

  • PDF

이동통신 단말기용 통합 영구 자석 형태의 마이크로스피커 개발 (Development of Combined Permanent Magnet Type Microspeakers Used for Mobile Phones)

  • 이홍주;황상문;권중학;황건용;양용창
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.497-502
    • /
    • 2005
  • In mobile phones of multimedia era, microspeakers of high quality sound are essential parts to generate human voice in speaker phone and MP3 song player. In this paper, two types of microspeakers, outer permanent magnet (PM) and combined PM type, are analyzed using electromagnetic, mechanical, acoustical and their coupling analysis. For performance comparison, voice coil diameter is chosen as a design parameter to change excitation position and magnet volume for both types. For combined PM type, sound pressure level (SPL) is improved due to increased PM volume compared to outer PM type. Also, with the decreased voice coil diameter for combined PM type, the 1st resonant mode of the diaphragm is more efficiently excited due to concentrative excitation, resulting in lower and broader frequency range. Therefore, it can be said that the combined PM type microspeakers are more advantageous for high performance microspeaker which are essential for multimedia era.

  • PDF

A novel porosity-based homogenization scheme for propagation of waves in axially-excited FG nanobeams

  • Ebrahimi, Farzad;Dabbagh, Ali
    • Advances in nano research
    • /
    • 제7권6호
    • /
    • pp.379-390
    • /
    • 2019
  • Putting emphasis on the effect of existence of porosity in the functionally graded materials (FGMs) on the dynamic responses of waves scattered in FG nanobeams resulted in implementation of a novel porosity-based homogenization method for FGMs and show its applicability in a wave propagation problem in the presence of axial pre-load for the first time. In the employed porosity-dependent method, the coupling between density and Young's moduli is included to consider for the effective moduli of the FG nanobeam by the means of a more reliable homogenization technique. The beam-type element will be modeled via the classical theory of beams, namely Euler-Bernoulli beam theory. Also, the dynamic form of the principle of virtual work will be extended for such nanobeams to derive the motion equations. Applying the nonlocal constitutive equations of Eringen on the obtained motion equations will be resulted in derivation of the nanobeam's governing equations. Depicted results reveal that the dispersion responses of FG nanobeams will be decreased as the porosity volume fraction is increased which must be noticed by the designers of advanced nanosize devices who are interested in employment of wave dispersion approach in continuous systems for specific goals.

Study on the propagation mechanism of stress wave in underground mining

  • Liu, Fei;Li, Lianghui
    • Computers and Concrete
    • /
    • 제25권2호
    • /
    • pp.145-154
    • /
    • 2020
  • For the influence of the propagation law of stress wave at the coal-rock interface during the pre-blasting of the top coal in top coal mining, the ANSYS-LS/DYNA fluid-solid coupling algorithm was used to numerical calculation and the life-death element method was used to simulate the propagation of explosion cracks. The equation of the crushing zone and the fracturing zone were derived. The results were calculated and showed that the crushing radius is 14.6 cm and the fracturing radius is 35.8 cm. With the increase of the angles between the borehole and the coal-rock interface, the vibration velocity of the coal particles and the rock particles at the interface decreases gradually, and the transmission coefficient of the stress wave from the coal mass into the rock mass decreases gradually. When the angle between the borehole and the coal-rock interface is 0°, the overall crushing degree is about 11% and up to the largest. With the increase of the distance from the charge to the coal-rock interface, the stress wave transmission coefficient and the crushing degree of the coal-rock are gradually decreased. At the distance of 50 cm, the crushing degree of the coal-rock reached the maximum of approximately 12.3%.

Vibration characteristic analysis of high-speed railway simply supported beam bridge-track structure system

  • Jiang, Lizhong;Feng, Yulin;Zhou, Wangbao;He, Binbin
    • Steel and Composite Structures
    • /
    • 제31권6호
    • /
    • pp.591-600
    • /
    • 2019
  • Based on the energy-variational principle, a coupling vibration analysis model of high-speed railway simply supported beam bridge-track structure system (HSRBTS) was established by considering the effect of shear deformation. The vibration differential equation and natural boundary conditions of HSRBTS were derived by considering the interlayer slip effect. Then, an analytic calculation method for the natural vibration frequency of this system was obtained. By taking two simply supported beam bridges of high-speed railway of 24 m and 32 m in span as examples, ANSYS and MIDAS finite-element numerical calculation methods were compared with the analytic method established in this paper. The calculation results show that two of them agree well with each other, validating the analytic method reported in this paper. The analytic method established in this study was used to evaluate the natural vibration characteristics of HSRBTS under different interlayer stiffness and length of rails at different subgrade sections. The results show that the vertical interlayer compressive stiffness had a great influence on the high-order natural vibration frequency of HSRBTS, and the effect of longitudinal interlayer slip stiffness on the natural vibration frequency of HSRBTS could be ignored. Under different vertical interlayer stiffness conditions, the subgrade section of HSRBTS has a critical rail length, and the critical length of rail at subgrade section decreases with the increase in vertical interlayer compressive stiffness.

Clinical and pharmacological application of multiscale multiphysics heart simulator, UT-Heart

  • Okada, Jun-ichi;Washio, Takumi;Sugiura, Seiryo;Hisada, Toshiaki
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권5호
    • /
    • pp.295-303
    • /
    • 2019
  • A heart simulator, UT-Heart, is a finite element model of the human heart that can reproduce all the fundamental activities of the working heart, including propagation of excitation, contraction, and relaxation and generation of blood pressure and blood flow, based on the molecular aspects of the cardiac electrophysiology and excitation-contraction coupling. In this paper, we present a brief review of the practical use of UT-Heart. As an example, we focus on its application for predicting the effect of cardiac resynchronization therapy (CRT) and evaluating the proarrhythmic risk of drugs. Patient-specific, multiscale heart simulation successfully predicted the response to CRT by reproducing the complex pathophysiology of the heart. A proarrhythmic risk assessment system combining in vitro channel assays and in silico simulation of cardiac electrophysiology using UT-Heart successfully predicted drug-induced arrhythmogenic risk. The assessment system was found to be reliable and efficient. We also developed a comprehensive hazard map on the various combinations of ion channel inhibitors. This in silico electrocardiogram database (now freely available at http://ut-heart.com/) can facilitate proarrhythmic risk assessment without the need to perform computationally expensive heart simulation. Based on these results, we conclude that the heart simulator, UT-Heart, could be a useful tool in clinical medicine and drug discovery.