• Title/Summary/Keyword: Coupling Controller

Search Result 212, Processing Time 0.026 seconds

Controller Design for Feedforward Decoupling in SPM-based Data Storage System (SPM-based Data Storage System 의 Feedforward Decoupling 기법을 적용한 제어기 설계)

  • Jeong, Ji-Young;Moon, Jun;Lee, Choong-Woo;Chung, Chung-Choo;Kim, Young-Sik
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.2
    • /
    • pp.59-65
    • /
    • 2007
  • Scanning Prove Microscope (SPM) - based Data Storage (SDS)는 Atomic Force Microscope (AFM)을 이용하여 Cantilever Tip 이 저장 장치 미디어에 나노미터 단위로 비트를 읽고, 쓰고 지우는 저장 장치로써, x, y 두 축을 이용한다. 따라서 축간 coupling 의 영향이 크게 발생한다. 따라서 축간 coupling 의 영향을 고려하여 제어기를 설계하여야 한다. 본 논문은 coupling 요소를 제거하기 위하여 Feedforward Decoupler 를 설계하여 Stage 의 입력 앞 단에 추가하는 방법을 제안하였다. Feedforward Decoupler 를 추가함으로써 coupling 요소가 줄어드는 것을 모의 실험을 통해 확인한다. 이를 통해 나노급으로 보다 정밀한 제어가 가능함을 확인하였다.

  • PDF

Stabilization of Underwater Glider by Buoyancy and Moment Control: Feedback Linearization Approach (부력 및 모멘트 제어를 이용한 수중글라이더의 안정화: 피드백 선형화 접근법)

  • Jee, Sung Chul;Lee, Ho Jae;Kim, Moon Hwan;Moon, Ji Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.546-551
    • /
    • 2014
  • This paper addresses a feedback linearization control problem for the nonlinear dynamics of an underwater glider system. We consider the buoyancy and moment as control inputs, which come from the mass variation and elevator control, respectively. Moment-to-force coupling increases the nonlinearities, which make the controller design difficult. By using a feedback linearization technique, we convert the nonlinear underwater glider to an equivalent linear model and design a linear controller. The controller for the equivalent converted linear system is designed using sufficient conditions in terms of linear matrix inequalities. Then, the control input of the nonlinear model of an underwater glider is formulated from the linear control input. An experimental examination is implemented to verify the effectiveness of the proposed technique.

Levitation Control of BLSRM using Adaptive Fuzzy PID Controller (퍼지제어기 기반의 새로운 BLSRM의 축방향지지력 제어)

  • He, Yingjie;Zhang, Fengge;Lee, Donghee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.519-520
    • /
    • 2016
  • BLSRM is a nonlinear, strong coupling and multi-variable system. The conventional control method is vulnerable to uncertain factors such as the load disturbance and satellite parameters change. It is difficult to obtain satisfactory control effect. Basing on a 8/10 BLSRM, whose suspending force control is separated with the torque control, this paper presents adaptive fuzzy PID controller for levitation control, which apply the fuzzy logic control to the conventional PID controller for parameters self-tuning. Both fuzzy and parameters of PID controller are self-tuning on-line, which improve the performance of controller. Finally, simulation and experimental results show the performance of the proposed method.

  • PDF

Robust Controller Design for the Regulation of Currents in a Three-phase Load (3상 부하 전류 제어를 위한 강인한 제어기 설계기법)

  • Jee, Sujung;Jo, Nam-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.7
    • /
    • pp.17-23
    • /
    • 2013
  • The regulation of currents in a three-phase load is an important issue for electric power systems. The most popular conventional method is a decoupling controller that compensates the coupling terms arising from DQ rotating frame transformation. Although the decoupling controller achieves decent performance in the absence of load parameter uncertainties, the variation of parameters causes performance to degrade intolerably. In this paper, we propose to use disturbance observer based controller to improve the control performance in spite of the parameter uncertainties. The computer simulation study validates the effectiveness of the proposed method.

Speed Controller Design Based on Current Controller Dynamics for Industry Servo Applications (전류제어기 동특성을 고려한 산업용 서보 구동시스템의 속도제어기 설계)

  • Seok Jul-Ki;Lee Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.166-169
    • /
    • 2002
  • The purpose of this paper is to develop systematic analysis and automatic tuning rule of PID controller for industry servo applications. Considering the coupling of inner current control loop and speed loop delay, the target plant fit into second-order plus time delay model. Based on PID controller design for high-order plus known/unknown time delay plant model, some formulars are provided for the control gain calculation and system-based theoretical analysis is developed, and it also allows an automatic controller setup to benefit the inexperienced user. In addition, the proposed design rule gives uniformly satisfactory performance and the motor speed stays on a desired response curve with minimal oscillation and settling time. This approach can be applicable in conjunction with the cascaded control loop which is widely used in practice.

  • PDF

A decoupling controller design for the seeker scan loop with a spin-stabilized platform (자전 안정화형 탐색기 주사루프의 비연성 제어기 설계)

  • 유인억;이상정
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.5
    • /
    • pp.35-41
    • /
    • 1998
  • This paper presents a decoupling controller of the missile seeker scan loop with a spin-stabilized platform. A precise seeker motion with respect to the scan command is essential for the higher acquisition probability of the target. As the seeker scan loop is a deeply cross-coupled two input two output system, an accurate pointing or scanning for each axis to the target is very difficult, even though provided with the help of a high performance controller. When a decoupling control is applied to the seeker scan loop, the cross-coupling between two axes can be reduced to a remarkable amount. As a low order of controller is required for the real time operation, a PI controller with decoupling filter is suggested and compared with other controllers. A linearized dynamic model of seeker scan loop is used and validated through the comparison of experimental results of step responses.

  • PDF

Advanced Repetitive Controller to Improve the Voltage Characteristics of Distributed Generation with Nonlinear Loads

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.409-418
    • /
    • 2013
  • This paper presents an enhanced control strategy which consists of a proportional-integral controller and a repetitive controller (RC) for improving the voltage performance of distributed generation (DG) under nonlinear load conditions. The proposed voltage controller is able to maintain a sinusoidal voltage at the point of common coupling (PCC) of the DG regardless of the harmonic voltage drop in the system impedance due to nonlinear load currents. In addition, by employing the delay time of the RC at one-sixth of the fundamental period, the proposed RC can overcome the slow response drawback of the traditional PI-RC. The proposed control strategy is analyzed and the design of the RC is presented in detail. The feasibility of the proposed control strategy is verified through simulation and experimental results.

A New Control Strategy for Distributed Generation under Nonlinear loads

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.256-257
    • /
    • 2012
  • This paper presents a new control strategy to improve voltage performance of distributed generation (DG) under nonlinear loads. The proposed voltage controller consists of a proportional-integral and a repetitive controller where the repetitive controller behaves as a bank of resonant controllers to compensate harmonic voltage drop on system impedance due to nonlinear load current. As a result, the voltage at the point of common coupling (PCC) of the DG is regulated to be sinusoidal waveform regardless of the presence of nonlinear loads. In order to validate the effectiveness of the proposed voltage controller, simulations are carried out using PSIM software and results are compared with those with the conventional PI controller.

  • PDF

HIPI Controller of IPMSM Drive using ALM-FNN Control (적응학습 퍼지뉴로 제어를 이용한 IPMSM 드라이브의 HIPI 제어기)

  • Kim, Do-Yeon;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.420-423
    • /
    • 2009
  • The conventional fixed gain PI controller is very sensitive to step change of command speed, parameter variation and load disturbances. The precise speed control of interior permanent magnet synchronous motor(IPMSM) drive becomes a complex issue due to nonlinear coupling among its winding currents and the rotor speed as well as the nonlinear electromagnetic developed torque. Therefore, there exists a need to tune the PI controller parameters on-line to ensure optimum drive performance over a wide range of operating conditions. This paper is proposed hybrid intelligent-PI(HIPI) controller of IPMSM drive using adaptive learning mechanism(ALM) and fuzzy neural network(FNN). The proposed controller is developed to ensure accurate speed control of IPMSM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. The PI controller parameters are optimized by ALM-FNN at all possible operating condition in a closed loop vector control scheme. The validity of the proposed controller is verified by results at different dynamic operating conditions.

  • PDF