• Title/Summary/Keyword: Coupling Controller

Search Result 212, Processing Time 0.029 seconds

Synchronizing control of intelligent indoor lift system (지능형 실내 위치전환 시스템의 동기제어)

  • 양호남;양현석;최용제;홍만복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.330-333
    • /
    • 2003
  • In this thesis. the application of the synchronizing control of the intelligent indoor lift system is showed. The separate axes of the indoor lift system are driven independently. PID controller, synchronous flexible logic compensating method and tilt sensor are applied to enhance the performance of the intelligent indoor lift system. the tilt sensor senses the horizontal error of the whole system. PID controller and synchronous flexible logic are used to compensate the synchronous errors of both the separate axes and whole system to be zero. Namely, using not the hardware coupling but the software algorithm. the indoor life system is operated without the error. Before applying the real system, the simulation using matlab testifies the possibility of the lift system. And the realization of the system is demonstrated with two DC servo motors. In the experiment test, flexible logic to compensate the synchronous error is chosen by the comparative method. the indoor lift system has to be considered the loading factor as the disturbance. Because the intelligent indoor lift system is developed to support the patients who don't change for themselves to move. finally, the system which considers the weight of the patient as the disturbance can carry the patients safely without synchronous and position error.

  • PDF

[ $H_{\infty}$ ] Design for Square Decoupling Controllers Using Genetic Algorithm (유전 알고리즘을 이용한 정방 비결합 제어기의 $H_{\infty}$ 설계)

  • Lee, Jong-Sung
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.4
    • /
    • pp.47-52
    • /
    • 2005
  • In this paper, the genetic algorithm is used to design a fixed order square decoupling $H_{\infty}$ controllers based on the Two-Degree-of-freedom standard model. The proposed decoupling $H_{\infty}$ controller which is minimizes the maximum energy in the output signal is designed to reduce the coupling properties between the input/output variables which make it difficult to control a system efficiently. A minimal set of assumptions for existence of the decoupling controller formula is described in the state-space formulas. It is verified by an example.

Development of a Low-cost Unmanned Underwater Vehicle and Performance Verification (저가 수중 무인 이동체 개발 및 운동성능 검증)

  • Hwang, Dongwook;Jang, Mingyu;Kim, Jinhyun
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.2
    • /
    • pp.103-112
    • /
    • 2018
  • In this paper, a high performance underwater vehicle which can be manufactured at low cost is designed and fabricated, and its performance is verified through experiments. To improve efficiency, the Myring equation is used to design the appearance and the duct structure including the thruster is planned to increase the propulsion efficiency while reducing the drag force. Through various methods, it is secured stable waterproof performance, and also is devised to have high speed movement and turning performance. The developed underwater vehicle is equipped with a high output BLDC motor to achieve a linear speed of up to 2 m/s and can change direction rapidly with stability through four rudders. The rudders are driven by coupling a timing belt and a pulley by extending the axis of a servo motor, and are equipped at the end of the body to turn heading. In addition, for stable posture control, the roll keeps its internal center of gravity low and maintains its stability due to restoring force. By controlling the four rudders, pitch and yaw are handled by the PID controller and show stable performance. To investigate the horizontal turning performance, it is confirmed that the yaw rate controller is designed and stable yaw rate control is performed.

Disturbance Observer-Based Hybrid Control of Displacement and Force in a Medical Tele-Analyzer

  • Suebsomran Anan;Parnichkun Manukid
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.70-78
    • /
    • 2005
  • This paper presents hybrid control of displacement and force in a Medical Tele-Analyzer by disturbance observer-based controller which is robust to internal and external disturbances; model uncertainty, load, and friction for instances. The developed Medical Tele-Analyzer consists of 2 subsystems; doctor-side subsystem and patient-side subsystem. In the doctor side subsystem, an array of displacement sensor is equipped to detect movement of doctor's hand and fingers. The detected information is transmitted to the patient side to be used in medical analysis. On the other hand, the patient-side subsystem consists of an array of displacement actuators, which is used to follow displacement of doctor's hand and fingers. An array of force sensors is used to detect forces between patient and the equipment. Since displacement control in patient side is coupled with force control in doctor side and vice-versa, design of the controller has to take into account this coupling. Not only using in medical tele-analysis, the proposed system can also be used in any tele-displacement-force controls of industrial processes.

A High Performance Co-design of 26 nm 64 Gb MLC NAND Flash Memory using the Dedicated NAND Flash Controller

  • You, Byoung-Sung;Park, Jin-Su;Lee, Sang-Don;Baek, Gwang-Ho;Lee, Jae-Ho;Kim, Min-Su;Kim, Jong-Woo;Chung, Hyun;Jang, Eun-Seong;Kim, Tae-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.2
    • /
    • pp.121-129
    • /
    • 2011
  • It is progressing as new advents and remarkable developments of mobile device every year. On the upper line reason, NAND FLASH large density memory demands which can be stored into portable devices have been dramatically increasing. Therefore, the cell size of the NAND Flash memory has been scaled down by merely 50% and has been doubling density each per year. [1] However, side effects have arisen the cell distribution and reliability characteristics related to coupling interference, channel disturbance, floating gate electron retention, write-erase cycling owing to shrinking around 20nm technology. Also, FLASH controller to manage shrink effect leads to speed and current issues. In this paper, It will be introduced to solve cycling, retention and fail bit problems of sub-deep micron shrink such as Virtual negative read used in moving read, randomization. The characteristics of retention, cycling and program performance have 3 K per 1 year and 12.7 MB/s respectively. And device size is 179.32 $mm^2$ (16.79 mm ${\times}$ 10.68 mm) in 3 metal 26 nm CMOS.

Design of Multivariable 2-DOF PID for Electrical Power of Flow System by Neural Network Tuning Method (신경망 튜우닝에 의한 유량계통 동력 제어용 다변수 2-자유도 PID의 제어기 설계)

  • 김동화
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.1
    • /
    • pp.78-84
    • /
    • 1998
  • The fluid system such as, the quantity control of raw water, chemicals control in the purification, the waste water system as well as in the feed water or circulation system of the power plant and the ventilation system is controlled with the valve and moter pump. The system's performance and the energy saving of the fluid systems depend on control of method and delicacy. Until, PI controller use in these system but it cannot control delicately because of the coupling in the system loop. In this paper we configure a single flow system to the multi variable system and suggest the application of 2-DOF PID controller and the tuning methods by the neural network to the electrical power of the flow control system. the 2-DOF controller follows to a setpoint has a robustness against the disturbance in the results of simulation. Keywords Title, Intelligent control, Neuro control, Flow control, 2 - DOF control., 2 - DOF control.

  • PDF

Fault Response of a DFIG-based Offshore Wind Power Plant Taking into Account the Wake Effect

  • Kim, Jinho;Lee, Jinsik;Suh, Yongsug;Lee, Byongjun;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.827-834
    • /
    • 2014
  • In order to meet the low voltage ride-through requirement in a grid code, a wind power plant (WPP) has to stay connected to a grid, supporting the voltage recovery for a grid fault. To do this, a plant-level controller as well as a wind generator (WG) controller is essential. The dynamic response of a WPP should be analyzed in order to design a plant-level controller. The dynamic response of a WPP for a grid fault is the collective response of all WGs, which depends on the wind speed approaching the WG. Thus, the dynamic response of a WPP should be analyzed by taking the wake effect into consideration, because different wind speeds at WGs will result in different responses of the WPP. This paper analyzes the response of a doubly fed induction generator (DFIG)-based offshore WPP with a grid fault taking into account the wake effect. To obtain the approaching wind speed of a WG in a WPP, we considered the cumulative impact of multiple shadowing and the effect of the wind direction. The voltage, reactive power, and active power at the point of common coupling of a 100 MW DFIG-based offshore WPP were analyzed during and after a grid fault under various wind and fault conditions using an EMTP-RV simulator. The results clearly demonstrate that not considering the wake effect leads to significantly different results, particularly for the reactive power and active power, which could potentially lead to incorrect conclusions and / or control schemes for a WPP.

Feasibility of a New Desktop Motion Analysis System with a Video Game Console for Assessing Various Three-Dimensional Wrist Motions

  • Kim, Kwang Gi;Park, Chan Soo;Jeon, Suk Ha;Jung, Eui Yub;Ha, Jiyun;Lee, Sanglim
    • Clinics in Orthopedic Surgery
    • /
    • v.10 no.4
    • /
    • pp.468-478
    • /
    • 2018
  • Background: The restriction of wrist motion results in limited hand function, and the evaluation of the range of wrist motion is related to the evaluation of wrist function. To analyze and compare the wrist motion during four selected tasks, we developed a new desktop motion analysis system using the motion controller for a home video game console. Methods: Eighteen healthy, right-handed subjects performed 15 trials of selective tasks (dart throwing, hammering, circumduction, and winding thread on a reel) with both wrists. The signals of light-emitting diode markers attached to the hand and forearm were detected by the optic receptor in the motion controller. We compared the results between both wrists and between motions with similar motion paths. Results: The parameters (range of motion, offset, coupling, and orientations of the oblique plane) for wrist motion were not significantly different between both wrists, except for radioulnar deviation for hammering and the orientation for thread winding. In each wrist, the ranges for hammering were larger than those for dart throwing. The offsets and the orientations of the oblique plane were not significantly different between circumduction and thread winding. Conclusions: The results for the parameters of dart throwing, hammering, and circumduction of our motion analysis system using the motion controller were considerably similar to those of the previous studies with three-dimensional reconstruction with computed tomography, electrogoniometer, and motion capture system. Therefore, our system may be a cost-effective and simple method for wrist motion analysis.

Droop Control for Parallel Inverers in Islanded Microgrid Considering Unbalanced Low-Voltage Line Impedances (마이크로그리드 독립 운전 모드시 저전압 불평형 선로 임피던스를 고려한 드룹 방식의 인버터 병렬 운전 제어 연구)

  • Lim, Kyung-Bae;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.387-396
    • /
    • 2013
  • This paper investigates the droop control of parallel inverters for an islanded mode of microgrid. Frequency and voltage droop control is one of power control and load demand sharing methods. However, although the active power is properly shared, the reactive power sharing is inaccurate with conventional method due to the unequal line impedances and the power coupling of active - reactive power. In order to solve this problem, an improved droop method with virtual inductor concept and a voltage and current controller properly designed have been considered and analyzed through the PSiM simulation. The performance of improved droop method is analyzed in not only low-voltage line but also medium voltage line.

A New Approach to Motion Modeling and Autopilot Design of Skid-To-Turn Missiles

  • Chanho Song;Kim, Yoon-Sik
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.231-238
    • /
    • 2002
  • In this paper, we present a new approach to autopilot design for skid-to-turn missiles which may have severe aerodynamic cross-couplings and nonlinearities with angle of attack. The model of missile motion is derived in the maneuver plane and, based on that model, pitch, yaw, and roll autopilot are designed. They are composed of a nonlinear term which compensates for the aerodynamic couplings and nonlinearities and a linear controller driven by the measured outputs of missile accelerations and angular rates. Besides the outputs, further information such as Mach number, dynamic pressure, total angle of attack, and bank angle is required. With the proposed autopilot and simple estimators of bank angle and total angle of attack, it is shown by computer simulations that the induced moments and some aerodynamic nonlinearities are properly compensated and that the performance is superior to that of the conventional ones.