• Title/Summary/Keyword: Coupled-field analysis

Search Result 526, Processing Time 0.027 seconds

Analysis of Electrostatic Field and Potential Distributions in Conductor-Backed Coupled Coplanar Waveguide Using Conformal Mapping Method (등각사상방법을 이용한 도체로 보강된 결합 도파 선로의 정전기장과 전위 분포 해석)

  • Yoo, Tae-Hoon;Han, Ki-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.35-42
    • /
    • 2010
  • We use conformal mapping method to derive the analytical expressions for calculating electrostatic fields and electric potentials surrounding the conductor-backed coupled coplanar waveguide(CBCCPW) structure. Using the derived expressions, the electrostatic fields and potentials are computed at various points of the CBCCPW's geometry and the field and potential distributions are analyzed. The proposed method provides a faster and simpler calculation of the field distributions than the full-wave analysis method because no iterations are required. This method can be widely applied to the analysis of microwave integrated circuits using coupled line, such as coupler, filter, and microstrip antenna.

A Characteristic Analysis of High Pressure and High Temperature 3-way Ball Valve (고온.고압용 3-way 볼밸브의 특성해석)

  • Lee, Joon-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.180-184
    • /
    • 2012
  • 3-way ball valves have been mostly used for high temperature/high pressure valves using in petrochemical carriers and oil tankers, which requires high quality products with confidentiality and durability. As a larger disaster may be generated by leakage of oil or gas from valves, thus the present research applied a numerical analysis method with thermal-structural coupled field analysis and the performance test. The Max stress by parts was confirmed through thermal-structural coupled field analysis and develop the 3-way ball valve design, which is safe on operating condition. And its performance was verified by carrying out pressure test, leakage test and durability test for the manufactured 3-way ball valves with satisfying it's regulations.

Generalized coupled non-Fickian/non-Fourierian diffusion-thermoelasticity analysis subjected to shock loading using analytical method

  • Hosseini, Seyed Amin;Abolbashari, Mohammad Hossein;Hosseini, Seyed Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.529-545
    • /
    • 2016
  • In this article, the generalized coupled non-Fickian diffusion-thermoelasticity analysis is carried out using an analytical method. The transient behaviors of field variables, including mass concentration, temperature and displacement are studied in a strip, which is subjected to shock loading. The governing equations are derived using generalized coupled non-Fickian diffusion-thermoelasticity theory, which is based on Lord-Shulman theory of coupled thermoelasticity. The governing equations are transferred to the frequency domain using Laplace transform technique and then the field variables are obtained in analytical forms using the presented method. The field variables are eventually determined in time domain by employing the Talbot technique. The dynamic behaviors of mass concentration, temperature and displacement are studied in details. It is concluded that the presented analytical method has a high capability for simulating the wave propagation with finite speed in mass concentration field as well as for tracking thermoelastic waves. Furthermore, the obtained results are more realistic than that of others.

Wave Transmission Analysis of Beam/Plate Point-Coupled Structures (보/평판 점연성구조의 파동전달해석)

  • 서성훈;홍석윤;길현권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.457-467
    • /
    • 2004
  • Wave Transmission analysis is one of methods for power transmission and reflection coefficients in coupled infinite structures. This paper focuses the wave transmission analysis of point coupled structures among semi-infinite beams and infinite thin plates considering all kinds of waves. It is supposed that the junction through the beams and plates is an identical spot and no point of contact exist except the spot. The boundary conditions are applied at the spot for continuities of 6 DOF displacements and 6 DOF force equilibriums, and then wave fields are obtained in the coupled structures. Since wave components in plate field are simplified using asymptotic expressions of Henkel functions, the displacements and forces at the plate junction can be simply expressed with magnitudes of the wave components. The wave fields according to incident waves gives the power transmission coefficients in beam/plate point coupled structures. For both coupled structures with a beam vertically and obliquely joined to a plate, power transmission analysis is performed and the analysis results are compared and examined.

  • PDF

An effective finite element approach for soil-structure analysis in the time-domain

  • Lehmann, L.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.4
    • /
    • pp.437-450
    • /
    • 2005
  • In this study, a complete analysis of soil-structure interaction problems is presented which includes a modelling of the near surrounding of the building (near-field) and a special description of the wave propagation process in larger distances (far-field). In order to reduce the computational effort which can be very high for time domain analysis of wave propagation problems, a special approach based on similarity transformation of the infinite domain on the near-field/far-field interface is applied for the wave radiation of the far-field. The near-field is discretised with standard Finite Elements, which also allows to introduce non-linear material behaviour. In this paper, a new approach to calculate the involved convolution integrals is presented. This approximation in time leads to a dramatically reduced computational effort for long simulation times, while the accuracy of the method is not affected. Finally, some benchmark examples are presented, which are compared to a coupled Finite Element/Boundary Element approach. The results are in excellent agreement with those of the coupled Finite Element/Boundary Element procedure, while the accuracy is not reduced. Furthermore, the presented approach is easy to incorporate in any Finite Element code, so the practical relevance is high.

Time Domain Seismic Response Analysis of Nonlinear Soil-Pile-Structure Interaction System using Inverse FFT of Dynamic Fundamental Solution (동적기본해의 역FFT에 의한 비선형 지반-말뚝-구조계의 시간영역 지진응답 해석)

  • 김문겸;임윤묵;조석호;박종헌;정대희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.125-132
    • /
    • 2002
  • In this study, a numerical method is developed for nonlinear analysis for soil-pile-structure interaction system in time domain. Finite elements considering material nonlinearity are used for the near field and boundary elements for the far field. In the near field, frame elements are used for modeling a pile and plane-strain elements for surrounding soil and superstructure. In. the far field, boundary element formulation using the dynamic fundamental solution is adopted and coupled with the near field. Transformation of stiffness matrices of boundary elements into time domain is performed by inverse FFT. Stiffness matrices in the near field and far field are coupled. Newmark direct time integration method is applied. Developed soil-pile-structure interaction analysis method is verified with available literature and commercial code. Also, parametric studies by developed numerical method are performed. And seismic response analysis is performed using actual earthquake records.

  • PDF

HIGHER ORDER ZIG-ZAG PLATE THEORY FOR COUPLED THERMO-ELECTRIC-MECHANICAL SMART STRUCTURES (열-기계-전기 하중이 완전 연계된 지능 복합재 평판의 지그재그 고차이론)

  • 오진호;조맹효
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.114-117
    • /
    • 2001
  • A higher order zig-zag plate theory is developed to refine accurately predict fully coupled of the mechanical, thermal, and electric behaviors. Both the displacement and temperature fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. Linear zig-zag form is adopted in the electric field. The layer-dependent degrees of freedom of displacement and temperature fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses and transverse heat flux The numerical examples of coupled and uncoupled analysis are demonstrated the accuracy and efficiency of the present theory. The present theory is suitable for the predictions of fully coupled behaviors of thick smart composite plate under mechanical, thermal, and electric loadings.

  • PDF

Closed-form and numerical solution of the static and dynamic analysis of coupled shear walls by the continuous method and the modified transfer matrix method

  • Mao C. Pinto
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.49-68
    • /
    • 2023
  • This study investigates the static and dynamic structural analysis of symmetrical and asymmetrical coupled shear walls using the continuous and modified transfer matrix methods by idealizing the coupled shear wall as a three-field CTB-type replacement beam. The coupled shear wall is modeled as a continuous structure consisting of the parallel coupling of a Timoshenko beam in tension (with axial extensibility in the shear walls) and a shear beam (replacing the beam coupling effect between the shear walls). The variational method using the Hamilton principle is used to obtain the coupled differential equations and the boundary conditions associated with the model. Using the continuous method, closed-form analytical solutions to the differential equation for the coupled shear wall with uniform properties along the height are derived and a numerical solution using the modified transfer matrix is proposed to overcome the difficulty of coupled shear walls with non-uniform properties along height. The computational advantage of the modified transfer matrix method compared to the classical method is shown. The results of the numerical examples and the parametric analysis show that the proposed analytical and numerical model and method is accurate, reliable and involves reduced processing time for generalized static and dynamic structural analysis of coupled shear walls at a preliminary stage and can used as a verification method in the final stage of the project.

Numerical Analysis of Arc-Heated Flow through a solution of Electric Field (전기장 해석을 통한 아크/열 유동 해석)

  • Kim Chin-Su;Oh Se-Jong;Choi Jeong-Yeol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.72-77
    • /
    • 2000
  • This paper presents the results of the application of a computational fluid dynamics algorithm for the simulation of plasma flows of arc-heated jet. The underlying physical model is based on the axisymmetric form of the conservation equations that are coupled with an arc model including Ohm heating, electromagnetic forces. The arc model given as a source term in fluid dynamic equations is determined by a solution of electric potential field governed by an elliptic partial differential equation. The governing equation of electric field is loosely coupled with fluid dynamic equations by an electric conductivity that is a function of state variables. However, the electric fields and flow fields cannot be solved In fully coupled manner, but should be solved iteratively due to the different characteristics of governing equations. With this solution approach, several applications of arc flow analysis will be presented including Arc Thruster and Circuit Breaker.

  • PDF