• Title/Summary/Keyword: Coupled strip line filter

Search Result 10, Processing Time 0.01 seconds

Fabrication of high-temperature superconducting low-pass filter for broad-band harmonic rejection (광대역 고조파 제거를 위한 고온초전도 저역통과필터의 제작)

  • Han, Seok-Gil;Kang, Gwang-Yong;Ahn, Dal;Suh, Jun-Seok;Choi, Chun-Geun;Kim, Sang-Hyeon;Kwak, Min-Hwan
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.193-196
    • /
    • 2000
  • A new type low-pass filter design method based on a coupled line and transmission line theory is proposed to suppress harmonics by attenuation poles in the stop band. The design formula are derived using the equivalent circuit of a coupled transmission line. The new low-pass filter structure is shown to have attractive properties such as compact size, wide stop band range and low insertion loss. The seventh-order low-pass filter designed by present method has a cutoff frequency of 0.9 CHz with a 0.01 dB ripple level. The coupled line type low-pass filter with strip line configuration was fabricated by using a high-temperature superconducting (HTS : YBa$_2$Cu$_3$O$_{7-{\delta}}$ thin film on MgO(100) substrate. Since the HTS coupled tine type low-pass filter was proposed with five attenuation poles in stop band such as 1.8, 2.5, 4, 5.5, 6.2 GHz. The fabricated low-pass filter has improved the attenuation characteristics up to seven times of the cutoff frequency.

  • PDF

Design of Wide Band VHF Microstrip Tunable Band-Pass Filters (광대역 VHF 마이크로스트립 가변대역통과 여파기의 설계)

  • 박병호;정용채;윤상원;장익수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.10
    • /
    • pp.24-28
    • /
    • 1992
  • A new design method of microstrip wide band VHF tunable bandpass filters using varacter diodes is presented. In the proposed filter both the input and output ports are coupled through capacitors, and an open micro-strip line is inserted between the coupled line in order to obtain the desired degree of coupling. The optimized filter responseses for the frequency range of 220-404MHz by TOUCH-STONE are compared with the measured ones.

  • PDF

Improvement of Band Pass Filter Using PBG and Aperture (Aperture와 PBG를 적용한 대역통과 여파기 성능개선에 관한 연구)

  • 이승재;서철헌
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10A
    • /
    • pp.847-852
    • /
    • 2003
  • Apertures and PBG(Photonic Band Gap) has been employed on the ground plane in the coupled line filter simultaneously. In order to observe the maximum bandwidth, we used the line gap 0.2mm which is can be made in our lab. Band-pass filter type is four-stage coupled strip line filter. Teflon has been used for the substrate ($\varepsilon$$\sub$r/=3.2). The center frequency and the bandwidth are 2.18GHz and 230MHz, respectively. The bandwidth is broaden from 230MHz to 310MHz (80Mhz, about 34.7%) by aperture effect and harmonic frequencies are suppressed to 20-30dB by PBG effect. So the harmonic frequencies have been suppressed by the PBG effect and the bandwidth are broaden by aperture effect.

A Novel Design Method of Direct Coupled BPF(Band Pass Filter) Based on EM Simulation of Individual Resonator (개별 공진기의 EM 시뮬레이션에 기초한 새로운 직접결합 대역여파기 설계 방법)

  • Yang, Seong-Sik;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.4
    • /
    • pp.333-343
    • /
    • 2009
  • The BPF designed by the formula based on strip line shows the center frequency shift and distortion in filter response and this becomes more significant with higher frequency. In this paper, the novel design based on EM simulation is proposed. In the design, the filter is decomposed into individual resonators and, for each resonator, the reactance slope and the inverter values are measured and tuned to desired design values for a inverter BPF prototype. The filter composed with such resonators shows the desired filter response without further tuning. This is because possible effects of discontinuities and dispersion are included in the filter parameter extraction. The method can generally apply to all filters that can be transformed into inverter BPF prototype. The procedure is verified by designing a 5th-order SIR filter and quite general to adapt into the design of a parallel coupled line filter, and hair-pin filter.

A 2012 Size Multilayer LTCC BPE for 2.4 GHz Band (2.4 GHz 대역 2012사이즈 적층 LTCC 대역통과 필터의 설계 및 제작)

  • 이영신;송희석;박종철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.1
    • /
    • pp.19-24
    • /
    • 2003
  • A very small size 2.4 GHz ISM band BPF(Band Pass Filter) is realized using LTCC Multi-layer technology. Proposed design method enables to achieve BPF size $2.0\times1.2\times0.8mm^3$. A $lambda/4$ resonator with shunt-to-ground loaded capacitor is used to shorten resonator length, achieving higher quality factor. Also this resonator enables BPF to improve out-of-band rejection. Coupling coefficients between coupled strip-line resonators and external quality factor (Qe) of a resonator are derived and applied to the filter design. The measured results show good agreement with simulated data.

  • PDF

Miniature Multilayer LTCC Bandpass Filter with Attenuation poles (감쇄극을 갖는 초소형 적층 LTCC 대역통과 필터)

  • Lee, Y.S.;Song, H.S.;Bang, K.S.;Kim, J.C.;Park, J.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.751-755
    • /
    • 2003
  • In this paper, We proposed compact multi-layer LTCC (Low Temperature Cofired Ceramic) bandpass filter for Bluetooth module. A ${\lambda}/4$ coupled stripline resonators are designed, which composed of coupled strip-line section and loading capacitance. This resonator with a loading capacitor has slow-wave characteristics. Due to the slow-wave effect of the proposed resonator, it is possible to design and fabricate a compact bandpass filter with a wide upper stop band. Attenuation poles in the lower stop band are achieved using controlling of electro-magnetic coupling between resonators. Using multi-layer LTCC technology, we designed and fabricated band pass filter with a finite attenuation pole and wide upper stopband. The overall size of the filter is $1.2{\times}2.0{\times}1.0mm^3$.

  • PDF

Design of a Interdigital Microstrip Bandpass Filter (깍지낀 마이크로스트립 대역통과 여파기 설계)

  • 신진옥;전성근;이문수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.565-573
    • /
    • 2000
  • In this paper, a interdigital microstrip bandpass filter is designed. A interdigital microstrip bandpass filter has many advantages such as insertion return loss, lower return loss, higher frequency selectivity and smaller in size in comparison with the conventional coupled line filter. A interdigital microstrip bandpass filter consists of quasi TEM-mode strip line resonators between parallel ground plant. Each resonator element is a quarter wavelength long of the center frequency and is short circuited at one end and open circuited at the other end. In the filter design, Ensemble software is used. Experimental results show that the bandwidth of interdigital microstrip bandpass filter is 2.52GHz, insertion loss is -1.8dB and return loss is -17.0dB at 11.20Hz.

  • PDF

Design of a Bandpass Filter using Two Layer Microstrip Structure (두 층 마이크로스트립 구조를 이용한 대역통과 여파기 설계)

  • 천동완;박정훈;신철재
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.3
    • /
    • pp.18-24
    • /
    • 2003
  • The resonator using two layer microstrip structure was proposed and the bandpass filter was designed using this resonator in this paper. The proposed resonator structure is constructed by placing a U-shape of resonator in the first layer and then placing a broadside coupling strip in the second layer just above of the U-shape of resonator's edge part. Because these structure has various design parameters than general single layer coupled line structure, filter design is more flexible. In this paper, the narrow band filter was designed using multi-layer structure that had been applied to broadband filter because it's high coupling nature. The filter was designed to have 4MHz center frequency and 3 % fractional bandwidth, and finally confirmed that can be realizable narrow band filter by using multi-layer structure through fabrication and measurement.

Design and fabrication of multilayer LTCC BPF using Combline structure (Combline 구조를 이용한 적층 LTCC 대역통과 필터의 설계 및 제작)

  • An, S.Y.;Lee, Y.S.;Bang, K.S.;Kim, K.C.;Kang, N.K.;Song, H.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.628-631
    • /
    • 2003
  • In this paper, 2.4 GHz WLAN BPF(Band Pass Filter) using LTCC(Low temperature cofiring ceramic) multilayer technology was simulated and manufactured. A modified ${\lambda}/4$ Hair-pin resonator with shunt-to ground loaded capacitor is used to shorten resonator length and improve circuit Q factor. Proposed BPF has a combline structure. Electro-magnetic Coupling between coupled strip-line resonators is controlled to provide attenuation poles at finite frequencies. The overall size of the filter is $3.2{\times}1.6{\times}1.3mm^3$. The measured result shows good agreement with simulated data.

  • PDF

Modified Hairpin Filters Improving the Suppression Performance of Stop-Band (저지 대역 제거 특성을 향상시킨 변형된 헤어핀 여파기)

  • Kim, Bong-Su;Kang, Min-Soo;Byun, Woo-Jin;Kim, Kwang-Seon;Song, Myung-Sun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.8-13
    • /
    • 2010
  • In this paper, a new hairpin type strip-line BPF(Band Pass Filter) improving the suppression performance of unwanted frequency signal is studied. A modified hairpin filter is designed by classical hairpin filter design methodology and is realized by newly placing structure of designed filter. And a newly formed coupled-line effects between modified bilateral symmetry structures make the transmission zeros. Each transmission zeros can shift its frequency to wanted frequency by tuning a certain part of filter. To investigate the validity of this novel technique, an order-5 Chebyshev BPF centered at 9.2 GHz with a 15 % FBW(fractional bandwidth) were used. According to design and measurement results, a good performance of insertion loss of 0.8 dB and unwanted signal suppression of maximum 50 dB is achieved at full input/output ports.