• Title/Summary/Keyword: Coupled shear wall

Search Result 84, Processing Time 0.019 seconds

Seismic Response of a High-Rise RC Bearing-Wall Structure with Irregularities of Weak Story and Torsion at Bottom Stories (저층부에 약층과 비틀림 비정형성을 가진 고층 비정형 RC벽식 구조물의 지진응답)

  • 이한선;고동우
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.81-91
    • /
    • 2003
  • Recently, many high-rise reinforced concrete(RC) bearing-wall structures of multiple uses have been constructed, which have the irregularities of weak(or soft) story and torsion at the lower stories simultaneously. The study stated herein was performed to investigate seismic performance of such a high-rise RC structure through a series of shaking table tests of a 1: 12 model. Based on the observations of the test results, the conclusions are drawn as follows: 1) Accidental torsion due to the uncertainty on the properties of structure can be reasonably predicted by using the dynamic analysis than by using lateral force procedure. 2) The mode coupled by translation and torsion induced the overturning moments not only in the direction of excitations but also in the perpendicular direction: The axial forces in columns due to this transverse overturning moment cannot be adequately predicted using the existing mode analysis technique, and 3) the hysteretic curve and the strength diagram between base shear and torque(BST) clearly reveal the predominant mode of vibrations and the failure mode.

Numerical Study of Flow Pattern and Drug Deposition in Drug-Eluting Stent (약물분출 스텐트 주위 유동형태와 약물침전에 대한 수치해석)

  • Seo, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1053-1060
    • /
    • 2011
  • This study is performed to determine the drug concentration profiles of drug-eluting stents (DES) for an ideal circular ring stent and intertwined stent models for various Reynolds numbers (Re = 200, 400, and 800). The Navier.Stokes equations coupled with the advection-diffusion equation are solved numerically in order to determine how the flow patterns and drug deposition are affected in the in-stent and post-stent regions where flow separation and recirculation occur. The presence of DES within the arterial segment affects the local drug distribution in the flow field. As a result, the drug concentration for the intertwined stent is higher over the in-stent region in comparison with the ideal stents. For a given stent geometry, the local drug concentration in the in-stent region decreases with Reynolds number, while for a given Reynolds number, the local drug concentration is relatively insensitive to the stent geometry. The results show that drug concentration along the arterial wall is significantly higher within the in-stent and post-stent regions for the intertwined stent geometry than for the ideal stent geometries.

Output-Only System Identification and Model Updating for Performance Evaluation of Tall Buildings (초고층건물의 성능평가를 위한 응답의존 시스템판별 및 모델향상)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.19-33
    • /
    • 2008
  • Dynamic response measurements from natural excitation were carried out for 25- and 42-story buildings to evaluate their inherent properties, such as natural frequencies, mode shapes and damping ratios. Both are reinforced concrete buildings adopting a core wall, or with shear walls as the major lateral force resisting system, but frames are added in the plan or elevation. In particular, shear walls in a 25-story building are converted to frames from the 4th floor level downwards while maintaining a core wall throughout, resulting in a fairly complex structure. Due to this, along with similar stiffness characteristics in the principal directions, significantly coupled and closely spaced modes of motion are expected in this building, making identification rather difficult. By using various state-of-the-art system identification methods, the modal parameters are extracted, and the results are then compared. Three frequency-domain and four time-domain based operational modal identification methods are considered. Overall, all natural frequencies and damping ratios estimated from the different identification methods showed a greater consistency for both buildings, while mode shapes exhibited some degree of discrepancy, varying from method to method. On the other hand, in comparison with analysis results obtained using the initial finite element(FE) models, test results exhibited a significant difference of about doubled frequencies, at least for the three lower modes in both buildings. To improve the correlation between test and analysis, a few manual schemes of FE model updating based on plausible reasons have been applied, and acceptable results are obtained. The advantages and disadvantages of each identification method used are addressed, and some difficulties that might arise from the updating of FE models, including automatic procedures, for such large structures are carefully discussed.

Aeromechanical stability analysis and control of helicopter rotor blades (헬리콥터 회전날개깃의 안정성 해석과 제어)

  • Kim, J.S.;Chattopadhyay, Aditi
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.9 no.1
    • /
    • pp.59-69
    • /
    • 2001
  • The rotor blade is modeled using a composite box beam with arbitrary wall. The active constrained damping layers are bonded to the upper and lower surfaces of the box beam to provide active and passive damping. A finite element model, based on a hybrid displacement theory, is used in the structural analysis. The theory is capable of accurately capturing the transverse shear effects in the composite primary structure, the viscoelastic and the piezoelectric layers within the ACLs. A reduced order model is derived based on the Hankel singular value. A linear quadratic Gaussian (LQG) controller is designed based on the reduced order model and the available measurement output. However, the LQG control system fails to stabilize the perturbed system although it shows good control performance at the nominal operating condition. To improve the robust stability of LQG controller, the loop transfer recovery (LTR) method is applied. Numerical results show that the proposed controller significantly improves rotor aeromechanical stability and suppresses rotor response over large variations in rotating speed by increasing lead-lag modal damping in the coupled rotor-body system.

  • PDF