• Title/Summary/Keyword: Coupled mode

Search Result 842, Processing Time 0.017 seconds

Development of Rapid Analytical Method of Forbidden Medicines in Dietary Supplements Using LC-ESI-Tandem MS (LC-ESI-tandem MS를 이용한 기능성표방식품 중 부정유해물질 신속검사체계 개발)

  • Kim, Hee-Yun;Jang, Young-Mi;Joo, Hyun-Jin;Jung, Young-Hyun;Lee, Myoung-Sook;Park, Jong-Seok;Lee, Kwang-Ho;Lee, Hwa-Mi
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.372-379
    • /
    • 2007
  • A high-performance liquid chromatography-electrospray ionization (HPLC-ESI) tandem MS was developed for the rapid and simultaneous determination of forbidden medicines in dietary supplements. Thirteen medicinal components such as PDE-5 inhibitors and their analogues, and the newly identified dimethylsildenafil and xanthoanthrafil, were included in this study. After tentative standardization of molecular ions in both polarities using thirteen references on the mass spectrometer, with ESI-continuous infusion via the syringe pump method, the relative intensity of the ions present in the resulting spectra was quantitatively compared. From the results, the ion mode was selected depending on each reference's characteristics. A HPLC method coupled with the ESI mode was developed considering the matrix effect and interference depending on the type of sample. The validation test of the developed method was followed by carrying out precision, accuracy, recovery, sensitivity and linearity, etc. The method showed sufficiently high sensitivity, reproducibility, and specificity, and produced 4 times faster results when compared with the existing HPLC/UV method for the determination of forbidden compounds in dietary supplements.

Electricity Production Performance of Single- and Dual-cathode Microbial Fuel Cells Coupled to Carbon Source and Nitrate (Single-cathode와 Dual-cathode 미생물연료전지의 탄소원과 질산성질소의 전류발생 특성)

  • Jang, Jae-Kyung;Lee, Eun-Young;Ryou, Young-Sun;Lee, Sung-Hyoun;Hwang, Ji-Hwan;Lee, Hyung-Mo;Kim, Jong-Goo;Kang, Youn-Koo;Kim, Young-Hwa
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.4
    • /
    • pp.382-386
    • /
    • 2011
  • Microbial fuel cells (MFC), devices that use bacteria as a catalyst to generate electricity, can utilize a variety of organic wastes as electron donors. The current generated may differ depending on the organic matter concentrations used, when other conditions, such as oxidant supply, proton transfer, internal resistance and so on, are not limiting factors. In these studies, a single-cathode type MFC (SCMFC) and dual-cathode type MFC (DCMFC) were used to ascertain the current's improvement through an increase in the contact area between the anode and the cathode compartments, because the cathode reaction is one of the most serious limiting factors in an MFC. Also an MFC was conducted to explore whether an improvement in electricity generation resulted from oxidizing the carbon sources and nitrates. About 250 mg $L^{-1}$ sodium acetate was fed to an anode compartment with a flow rate of 0.326 mL $min^{-1}$ by continuous mode. The current generated from the DCMFC was higher than the value produced from MFC with a single cathode. COD removal of dual-cathode MFC was also higher than that of single-cathode MFC. The nitrate didn't affect current generation at 2 mM, but when 4 and 8 mM nitrate was supplied, the current in the single-cathode and dual-cathode MFC was decreased by 98% from $5.97{\pm}0.13$ to $0.23{\pm}0.03$ mA and $8.40{\pm}0.23$ to $0.20{\pm}0.01$ mA, respectively. These results demonstrate that increasing of contact area of the anode and cathode can raise current generation by an improvement in the cathode reaction.