• 제목/요약/키워드: Coupled equations of motion

검색결과 247건 처리시간 0.021초

유체-입자 연성 운동에 의한 굽힘형 배관의 침식률 수치해석 (Numerical Simulation of Erosion Rate on Pipe Elbow Using Coupled Behavior of Fluid and Particle)

  • 장호상;이하원;황세윤;이장현
    • 한국해양공학회지
    • /
    • 제31권1호
    • /
    • pp.14-21
    • /
    • 2017
  • The erosion of solid particles in a pipe elbow was numerically investigated. A numerical procedure to estimate the sand erosion rate, as well as the particle motion, in the pipe elbow flow was introduced. This procedure was performed based on the combined empirical erosion model and computational fluid dynamics (CFD) analysis to consider the interaction between the particle motion and the eroded surface. The underlying turbulent flow on an Eulerian frame is described by the Reynolds averaged Navier-Stokes (RANS) equations with a $k-{\epsilon}$ turbulent model. The one-way coupled Eulerian-Lagrangian motion of the air flow and sand particles is employed to simulate the particle trajectories and particle-wall interactions on the pipe surfaces. The predicted CFD erosion magnitudes are compared with experimental data from pipe elbows. The erosion rate results do not reveal a good accordance between the simulation and experimental results. It seems that the CFD shows a slightly over-predicted erosion ratio.

모터의 연성을 고려한 로터리 압축기의 과도진동 해석 (Transient Vibration Analysis of a Rotary Compressor Considering the Coupled Effects of Motor)

  • 정의봉;김정훈;안세진;황선웅
    • 한국소음진동공학회논문집
    • /
    • 제12권11호
    • /
    • pp.847-855
    • /
    • 2002
  • A rotary compressors are used most widely In air-conditioning systems. Noise and vibration of a rotary compressor is an important problems during turning on and off as well as during operating. To estimate the vibration occurring during turning on and off, vibration analysis of a motor-compressor coupled system is required. In this paper, through modeling the motor and solving the forces from the equations of motion of the moving parts, the analysis of vibration of the compressor taking into consideration of the effects of motor and moving parts was performed. The accelerations of accumulator during turning on. turning off and operation are simulated. And simulated accelerations are compared with those of experimental data.

On the dispersion of waves propagating in "plate+fluid layer" systems

  • Akbarov, Surkay D.;Negin, Masoud
    • Coupled systems mechanics
    • /
    • 제10권2호
    • /
    • pp.123-142
    • /
    • 2021
  • The paper deals with the study of the dispersion of quasi-Lamb waves in a hydro-elastic system consisting of an elastic plate, barotropic compressible inviscid fluid, and rigid wall. The motion of the plate is described using the exact equations of elastodynamics, however, the flow of the fluid using the linearized equations and relations of the Navier-Stokes equations. The corresponding dispersion equation is obtained and this equation is solved numerically, as a result of which the corresponding dispersion curves are constructed. The main attention is focused on the effect of the presence of the fluid and the effect of the fluid layer thickness (i.e., the fluid depth) on the dispersion curves. The influence of the problem parameters on the dispersion curves related to the quasi-Scholte wave is also considered. As a result of the analyses of the numerical results, concrete conclusions are made about the influence of the fluid depth, the rigid wall restriction on the fluid motion, and the material properties of the constituents on the dispersion curves. During the analyses, the zeroth and the first four modes of the propagating waves are considered.

Vibration analysis of a Timoshenko beam carrying 3D tip mass by using differential transform method

  • Kati, Hilal Doganay;Gokdag, Hakan
    • Structural Engineering and Mechanics
    • /
    • 제65권4호
    • /
    • pp.381-388
    • /
    • 2018
  • Dynamic behaviour of beam carrying masses has attracted attention of many researchers and engineers. Many studies on the analytical solution of beam with concentric tip mass have been published. However, there are limited works on vibration analysis of beam with an eccentric three dimensional object. In this case, bending and torsional deformations of beam are coupled due to the boundary conditions. Analytical solution of equations of motion of the system is complicated and lengthy. Therefore, in this study, Differential Transform Method (DTM) is applied to solve the relevant equations. First, the Timoshenko beam with 3D tip attachment whose centre of gravity is not coincident with beam end point is considered. The beam is assumed to undergo bending in two orthogonal planes and torsional deformation about beam axis. Using Hamilton's principle the equations of motion of the system along with the possible boundary conditions are derived. Later DTM is applied to obtain natural frequencies and mode shapes of the system. According to the relevant literature DTM has not been applied to such a system so far. Moreover, the problem is modelled by Ansys, the well-known finite element method, and impact test is applied to extract experimental modal data. Comparing DTM results with finite element and experimental results it is concluded that the proposed approach produces accurate results.

Slender piezoelectric beams with resistive-inductive electrodes - modeling and axial wave propagation

  • Schoeftner, Juergen;Buchberger, Gerda;Benjeddou, Ayech
    • Smart Structures and Systems
    • /
    • 제18권2호
    • /
    • pp.335-354
    • /
    • 2016
  • This contribution presents an extended one-dimensional theory for piezoelectric beam-type structures with non-ideal electrodes. For these types of electrodes the equipotential area condition is not satisfied. The main motivation of our research is originated from passive vibration control: when an elastic structure is covered by several piezoelectric patches that are linked via resistances and inductances, vibrational energy is efficiently dissipated if the electric network is properly designed. Assuming infinitely small piezoelectric patches that are connected by an infinite number of electrical, in particular resistive and inductive elements, one obtains the Telegrapher's equation for the voltage across the piezoelectric transducer. Embedding this outcome into the framework of Bernoulli-Euler, the final equations are coupled to the wave equations for the longitudinal motion of a bar and to the partial differential equations for the lateral motion of the beam. We present results for the wave propagation of a longitudinal bar for several types of electrode properties. The frequency spectra are computed (phase angle, wave number, wave speed), which point out the effect of resistive and inductive electrodes on wave characteristics. Our results show that electrical damping due to the resistivity of the electrodes is different from internal (=strain velocity dependent) or external (=velocity dependent) mechanical damping. Finally, results are presented, when the structure is excited by a harmonic single force, yielding that resistive-inductive electrodes are suitable candidates for passive vibration control that might be of great interest for practical applications in the future.

Non-linear vibration and stability analysis of an axially moving rotor in sub-critical transporting speed range

  • Ghayesh, Mergen H.;Ghazavi, Mohammad R.;Khadem, Siamak E.
    • Structural Engineering and Mechanics
    • /
    • 제34권4호
    • /
    • pp.507-523
    • /
    • 2010
  • Parametric and forced non-linear vibrations of an axially moving rotor both in non-resonance and near-resonance cases have been investigated analytically in this paper. The axial speed is assumed to involve a mean value along with small harmonic fluctuations. Hamilton's principle is employed for this gyroscopic system to derive three coupled non-linear equations of motion. Longitudinal inertia is neglected under the quasi-static stretch assumption and two integro-partial-differential equations are obtained. With introducing a complex variable, the equations of motion is presented in the form of a single, complex equation. The method of multiple scales is applied directly to the resulting equation and the approximate closed-form solution is obtained. Stability boundaries for the steady-state response are formulated and the frequency-response curves are drawn. A number of case studies are considered and the numerical simulations are presented to highlight the effects of system parameters on the linear and nonlinear natural frequencies, mode shapes, limit cycles and the frequency-response curves of the system.

CFD-FSI simulation of vortex-induced vibrations of a circular cylinder with low mass-damping

  • Borna, Amir;Habashi, Wagdi G.;McClure, Ghyslaine;Nadarajah, Siva K.
    • Wind and Structures
    • /
    • 제16권5호
    • /
    • pp.411-431
    • /
    • 2013
  • A computational study of vortex-induced transverse vibrations of a cylinder with low mass-damping is presented. An Arbitrary Lagrangian-Eulerian (ALE) formulation of the Unsteady Reynolds-Averaged Navier-Stokes equations (URANS), along with the Spalart-Allmaras (SA) one-equation turbulence model, are coupled conservatively with rigid body motion equations of the cylinder mounted on elastic supports in order to study the amplitude and frequency response of a freely vibrating cylinder, its flow-induced motion, Vortex Street, near-wake flow structure, and unsteady loading in a moderate range of Reynolds numbers. The time accurate response of the cylinder from rest to its limit cycle is studied to explore the effects of Reynolds number on the start of large displacements, motion amplitude, and frequency. The computational results are compared with published physical experiments and numerical studies. The maximum amplitudes of displacements computed for various Reynolds numbers are smaller than the experimental values; however, the overall agreement of the results is quite satisfactory, and the upper branch of the limit-cycle displacement amplitude vs. reduced velocity response is captured, a feature that was missed by other studies. Vortex shedding modes, lock-in phenomena, frequency response, and phase angles are also in agreement with experiments.

A multiple scales method solution for the free and forced nonlinear transverse vibrations of rectangular plates

  • Shooshtari, A.;Khadem, S.E.
    • Structural Engineering and Mechanics
    • /
    • 제24권5호
    • /
    • pp.543-560
    • /
    • 2006
  • In this paper, first, the equations of motion for a rectangular isotropic plate have been derived. This derivation is based on the Von Karmann theory and the effects of shear deformation have been considered. Introducing an Airy stress function, the equations of motion have been transformed to a nonlinear coupled equation. Using Galerkin method, this equation has been separated into position and time functions. By means of the dimensional analysis, it is shown that the orders of magnitude for nonlinear terms are small with respect to linear terms. The Multiple Scales Method has been applied to the equation of motion in the forced vibration and free vibration cases and closed-form relations for the nonlinear natural frequencies, displacement and frequency response of the plate have been derived. The obtained results in comparison with numerical methods are in good agreements. Using the obtained relation, the effects of initial displacement, thickness and dimensions of the plate on the nonlinear natural frequencies and displacements have been investigated. These results are valid for a special range of the ratio of thickness to dimensions of the plate, which is a characteristic of the Multiple Scales Method. In the forced vibration case, the frequency response equation for the primary resonance condition is calculated and the effects of various parameters on the frequency response of system have been studied.

구조동역학-열탄성학 연성문제의 유한요소 정식화 및 분류 (The Finite Element Formulation and Its Classification of Dynamic Thermoelastic Problems of Solids)

  • Yun, Seong-Ho
    • 한국전산구조공학회논문집
    • /
    • 제13권1호
    • /
    • pp.37-49
    • /
    • 2000
  • 본 논문은 구조물의 동역학 및 열탄성 연성문제 해석을 위한 통합된 유한요소법을 개발하는데 초점을 두고있다. 첫째로, 열전도 방정식에 열변위라는 물리량을 도입하여 동역학의 운동 방정식과 유사하도록 유도한 후, 변분법과 일반좌표계를 이용하여 시간영역에서 정식화하였다. 둘째로, 두 방정식에 라플라스 변환을 동시에 도입하고, 공간변수만을 갖는 형상함수와 가중잔여법을 적용하여 유한요소식을 변환영역에서 표현하였다. 연성된 방정식을 문제의 특성에 따라서 분류하였고 정식화 과정을 검증하였다. 또한 수치해석 알고리듬이 갖는 수치 역 변환의 정성적인 경향에 대하여 검토하였다.

  • PDF

소형 왕복동 압축기의 동적 거동 및 윤활특성 해석 (Analysis of the Dynamic Behavior and Lubrication Characteristics of a Small Reciprocating Compressor)

  • 김태종
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1138-1145
    • /
    • 2003
  • In this paper, a study on the dynamic behavior and lubrication characteristics of a reciprocating compression mechanism used in small refrigeration compressor is performed. In the problem formulation of the compressor dynamics, the viscous frictional force between piston and cylinder wall is considered in order to determine the coupled dynamic behaviors of piston and crankshaft. The solutions of the equations of motion of the reciprocating mechanism along with the time dependent Reynolds equations for the lubricating film between piston and cylinder wall and oil films of the journal bearings are obtained simultaneously. The hydrodynamic forces of journal bearings are calculated using finite bearing model and Gumbel boundary condition. And, a Newton-Raphson procedure was employed in solving the nonlinear equations of piston and crankshaft. The results explored the effects of design parameters on the stability and lubrication characteristics of the compression mechanism.