• 제목/요약/키워드: Coupled data assimilation

검색결과 22건 처리시간 0.029초

전지구 예보모델의 대기-해양 약한 결합자료동화 활용성에 대한 연구 (Application of Weakly Coupled Data Assimilation in Global NWP System)

  • 윤현진;박혜선;김범수;박정현;임정옥;부경온;강현석
    • 대기
    • /
    • 제29권2호
    • /
    • pp.219-226
    • /
    • 2019
  • Generally, the weather forecast system has been run using prescribed ocean condition. As it is widely known that coupling between atmosphere and ocean process produces consistent initial condition at all-time scales to improve forecast skill, there are many trials on the application of data assimilation of coupled model. In this study, we implemented a weakly coupled data assimilation (short for WCDA) system in global NWP model with low horizontal resolution for coupled forecast with uncoupled initialization, following WCDA system at the Met Office. The experiment is carried out for a typhoon evolution forecast in 2017. Air-sea exchange process provides SST cooling and gives a substantial impact on tendency of central pressure changes in the decaying phase of the typhoon, except the underestimated central pressure. Coupled data assimilation is a challenging new area, requiring further work, but it would offer the potential for improving air-sea feedback process on NWP timescales and finally contributing forecast accuracy.

대기-해양 결합 자료동화가 서해 연안지역의 기상예측에 미치는 영향 연구 (Effect of a Coupled Atmosphere-ocean Data Assimilation on Meteorological Predictions in the West Coastal Region of Korea)

  • 이성빈;송상근;문수환
    • 한국환경과학회지
    • /
    • 제31권7호
    • /
    • pp.617-635
    • /
    • 2022
  • The effect of coupled data assimilation (DA) on the meteorological prediction in the west coastal region of Korea was evaluated using a coupled atmosphere-ocean model (e.g., COAWST) in the spring (March 17-26) of 2019. We performed two sets of simulation experiments: (1) with the coupled DA (i.e., COAWST_DA) and (2) without the coupled DA (i.e., COAWST_BASE). Overall, compared with the COAWST_BASE simulation, the COAWST_DA simulation showed good agreement in the spatial and temporal variations of meteorological variables (sea surface temperature, air temperature, wind speed, and relative humidity) with those of the observations. In particular, the effect of the coupled DA on wind speed was greatly improved. This might be primarily due to the prediction improvement of the sea surface temperature resulting from the coupled DA in the study area. In addition, the improvement of meteorological prediction in COAWST_DA simulation was also confirmed by the comparative analysis between SST and other meteorological variables (sea surface wind speed and pressure variation).

접합대순환모형의 초기조건 생산방법에 따른 북반구 겨울철 기온과 해수면 온도의 계절 예측성 비교 연구 (Comparative Study on the Seasonal Predictability Dependency of Boreal Winter 2m Temperature and Sea Surface Temperature on CGCM Initial Conditions)

  • 안중배;이준리
    • 대기
    • /
    • 제25권2호
    • /
    • pp.353-366
    • /
    • 2015
  • The impact of land and ocean initial condition on coupled general circulation model seasonal predictability is assessed in this study. The CGCM used here is Pusan National University Couple General Circulation Model (PNU CGCM). The seasonal predictability of the surface air temperature and ocean potential temperature for boreal winter are evaluated with 4 different experiments which are combinations of 2 types of land initial conditions (AMI and CMI) and 2 types of ocean initial conditions (DA and noDA). EXP1 is the experiment using climatological land initial condition and ocean initial condition to which the data assimilation technique is not applied. EXP2 is same with EXP1 but used ocean data assimilation applied ocean initial condition. EXP3 is same with EXP1 but AMIP-type land initial condition is used for this experiment. EXP4 is the experiment using the AMIP-type land initial condition and data assimilated ocean initial condition. By comparing these 4 experiments, it is revealed that the impact of data assimilated ocean initial is dominant compared to AMIP-type land initial condition for seasonal predictability of CGCM. The spatial and temporal patterns of EXP2 and EXP4 to which the data assimilation technique is applied were improved compared to the others (EXP1 and EXP3) in boreal winter 2m temperature and sea surface temperature prediction.

VAF 변분법을 이용한 전구 해양자료 동화 연구 (A Study of Global Ocean Data Assimilation using VAF)

  • 안중배;윤용훈;조익현;오혜람
    • 한국해양학회지:바다
    • /
    • 제10권1호
    • /
    • pp.69-78
    • /
    • 2005
  • 본 연구에서는 전구 해양에서 관측되는 ARGO및 TAO해양 자료를 이용하여 해양의 3차원적인 구조를 분석.동화하고 궁극적으로 해양대순환모형을 위한 초기장을 생산하였다. 초기장의 생산을 위하여 전구 해양대순환 모형인 MOM3.1을 이용하였으며 생산한 배경장에, 계산시간과 계산공간을 절약할 수 있는 공간필터를 사용한 변분법(VAF, variational analysis using filter)을 이용하여 ARGO와 TAO 수온 자료를 동화하였다. 또한 본 연구에서는 자료 동화가 미치는 지속적인 영향을 살펴보고자 실험적분을 수행하였는데, 모형의 초기입력 자료를 자료동화 기법을 적용한 경우와 적용하지 않은 두 가지로 나누어 비교 실험을 수행하였다. 본 연구에서 자료 동화된 분석장은 OISST와의 비교를 통해 적절히 생산되었음을 보여주었다. 관측자료를 동화한 분석장을 초기자료로 한 10개월간의 적분결과를 살펴보면, 자료 동화를 통해 제거된 모형의 계통적 bias가 적분이 진행되는 과정에서 관성 중력파 등의 형태로 소멸되지 않고 지속적으로 관측과 유사하게 유지되었다. 이는 본 연구에서 실행한 자료동화가 모형의 역학적인 균형을 유지하면서 적절히 이루어졌음을 의미하며, 전구 대순환 모형을 이용한 중.장기 대기.해양 예측에 이러한 해양 자료동화가 대단히 유용하다는 것을 의미한다.

연안지역 지형적 특성에 따른 윈드프로파일러 자료의 자료동화 효과 분석 (The Application of Wind Profiler Data and Its Effects on Wind Distributions in Two Different Coastal Areas)

  • 정주희;노소영;송상근;김유근
    • 한국환경과학회지
    • /
    • 제19권6호
    • /
    • pp.689-701
    • /
    • 2010
  • The effects of high-resolution wind profiler (HWP) data on the wind distributions were evaluated in two different coastal areas during the study period (23-26 August, 2007), indicating weak-gradient flows. The analysis was performed using the Weather Research and Forecasting (WRF) model coupled with a three-dimensional variational (3DVAR) data assimilation system. For the comparison purpose, two coastal regions were selected as: a southwestern coastal (SWC) region characterized by a complex shoreline and a eastern coastal (EC) region surrounding a simple coastline and high mountains. The influence of data assimilation using the HWP data on the wind distributions in the SWC region was moderately higher than that of the EC region. In comparison between the wind speed and direction in the two coastal areas, the application of the HWP data contributed to improvement of the wind direction distribution in the SWC region and the wind strength in the EC region, respectively. This study suggests that the application of the HWP data exerts a large impact on the change in wind distributions over the sea and thus can contribute to the solution to lack of satellite and buoy data with their observational uncertainty.

Accuracy analysis of flood forecasting of a coupled hydrological and NWP (Numerical Weather Prediction) model

  • Nguyen, Hoang Minh;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.194-194
    • /
    • 2017
  • Flooding is one of the most serious and frequently occurred natural disaster at many regions around the world. Especially, under the climate change impact, it is more and more increasingly trend. To reduce the flood damage, flood forecast and its accuracy analysis are required. This study is conducted to analyze the accuracy of the real-time flood forecasting of a coupled meteo-hydrological model for the Han River basin, South Korea. The LDAPS (Local Data Assimilation and Prediction System) products with the spatial resolution of 1.5km and lead time of 36 hours are extracted and used as inputs for the SURR (Sejong University Rainfall-Runoff) model. Three statistical criteria consisting of CC (Corelation Coefficient), RMSE (Root Mean Square Error) and ME (Model Efficiency) are used to evaluate the performance of this couple. The results are expected that the accuracy of the flood forecasting reduces following the increase of lead time corresponding to the accuracy reduction of LDAPS rainfall. Further study is planed to improve the accuracy of the real-time flood forecasting.

  • PDF

토지 피복별 차등 가열이 도시 지역의 흐름과 기온에 미치는 영향 (Effects of Differential Heating by Land-Use types on flow and air temperature in an urban area)

  • 박수진;최소희;강정은;김동주;문다솜;최원식;김재진;이영곤
    • 대한원격탐사학회지
    • /
    • 제32권6호
    • /
    • pp.603-616
    • /
    • 2016
  • 본 연구에서는 기상청 현업 국지기상모델(Local Data Assimilation and Prediction System, LDAPS)과 전산유체역학(Computational Fluid Dynamics, CFD) 모델을 접합하여, 서울 종로구 송월동에 위치한 지동기상관측소(서울 ASOS) 주변 지역의 기상 환경을 분석하였다. 토지 피복별 차등 가열이 도시 지역의 대기 흐름과 기온에 미치는 영향을 분석하기 위하여, 시간 변화에 따른 토지 피복별 지표면 온도와 그림자 영역에 대한 지표면 온도 감소 효과를 고려하였다. LDAPS 모델은 상세한 건물, 지형, 지표면 가열 효과를 고려하지 못하기 때문에, 풍속을 과대모의 하고 기온을 과소 모의하였다. 건물과 지형의 마찰 효과와 태양 복사에 의한 지표면 가열을 고려할 수 있는 LDAPS-CFD 접합 모델은 서울 ASOS 지점의 관측 풍속과 유사한 풍속을 모의하였고, 관측 기온을 잘 재현하였다. 주로 동풍이 부는 오전 시간대에는 LDAPS-CFD 접합 모델 또한 기온을 과소모의 하였는데, 이는 서울 ASOS 지점의 풍상측(동쪽)에 위치한 경희궁 주변 지역에 주로 수목이 분포하고 있고, 표면 온도가 상대적으로 낮기 때문인 것으로 판단된다. 그러나, 주로 남동풍 계열의 바람이 부는 오후 시간대에는 풍상측에 위치한 건물의 표면 가열의 효과로 인해 서울 ASOS 지점의 관측 기온을 상대적으로 잘 모의하였다.

앙상블 기반 관측 자료에 따른 예측 민감도 모니터링 시스템 구축 및 평가 (A Monitoring System of Ensemble Forecast Sensitivity to Observation Based on the LETKF Framework Implemented to a Global NWP Model)

  • 이영수;신설은;김정한
    • 대기
    • /
    • 제30권2호
    • /
    • pp.103-113
    • /
    • 2020
  • In this study, we analyzed and developed the monitoring system in order to confirm the effect of observations on forecast sensitivity on ensemble-based data assimilation. For this purpose, we developed the Ensemble Forecast Sensitivity to observation (EFSO) monitoring system based on Local Ensemble Transform Kalman Filter (LETKF) system coupled with Korean Integrated Model (KIM). We calculated 24 h error variance of each of observations and then classified as beneficial or detrimental effects. In details, the relative rankings were according to their magnitude and analyzed the forecast sensitivity by region for north, south hemisphere and tropics. We performed cycle experiment in order to confirm the EFSO result whether reliable or not. According to the evaluation of the EFSO monitoring, GPSRO was classified as detrimental observation during the specified period and reanalyzed by data-denial experiment. Data-denial experiment means that we detect detrimental observation using the EFSO and then repeat the analysis and forecast without using the detrimental observations. The accuracy of forecast in the denial of detrimental GPSRO observation is better than that in the default experiment using all of the GPSRO observation. It means that forecast skill score can be improved by not assimilating observation classified as detrimental one by the EFSO monitoring system.

기상청 전지구 해양순환예측시스템(NEMO/NEMOVAR)과 미해군 해양자료 동화시스템(HYCOM/NCODA)의 해양 일분석장 열적환경 정확도 비교 (A Comparison of Accuracy of the Ocean Thermal Environments Using the Daily Analysis Data of the KMA NEMO/NEMOVAR and the US Navy HYCOM/NCODA)

  • 고은별;문일주;정영윤;장필훈
    • 대기
    • /
    • 제28권1호
    • /
    • pp.99-112
    • /
    • 2018
  • In this study, the accuracy of ocean analysis data, which are produced from the Korea Meteorological Administration (KMA) Nucleus for European Modelling of the Ocean/Variational Data Assimilation (NEMO/NEMOVAR, hereafter NEMO) system and the HYbrid Coordinate Ocean Model/Navy Coupled Ocean Data Assimilation (HYCOM/NCODA, hereafter HYCOM) system, was evaluated using various oceanic observation data from March 2015 to February 2016. The evaluation was made for oceanic thermal environments in the tropical Pacific, the western North Pacific, and the Korean peninsula. NEMO generally outperformed HYCOM in the three regions. Particularly, in the tropical Pacific, the RMSEs (Root Mean Square Errors) of NEMO for both the sea surface temperature and vertical water temperature profile were about 50% smaller than those of HYCOM. In the western North Pacific, in which the observational data were not used for data assimilation, the RMSE of NEMO profiles up to 1000 m ($0.49^{\circ}C$) was much lower than that of HYCOM ($0.73^{\circ}C$). Around the Korean peninsula, the difference in RMSE between the two models was small (NEMO, $0.61^{\circ}C$; HYCOM, $0.72^{\circ}C$), in which their errors show relatively big in the winter and small in the summer. The differences reported here in the accuracy between NEMO and HYCOM for the thermal environments may be attributed to horizontal and vertical resolutions of the models, vertical coordinate and mixing scheme, data quality control system, data used for data assimilation, and atmosphere forcing. The present results can be used as a basic data to evaluate the accuracy of NEMO, before it becomes the operational model of the KMA providing real-time ocean analysis and prediction data.

다수/다차원 격자형데이터를 이용한 해상도 변환의 효율적 방안 연구 (The Effective Method for Changing the Resolution of the Grid Environment Data)

  • 김창진;오광백;나영남
    • 한국군사과학기술학회지
    • /
    • 제16권2호
    • /
    • pp.169-174
    • /
    • 2013
  • In counterfire warfare, it is important to detect and attack enemy targets faster than the enemy using sensing The grided environmental data is usually provided by the numerical simulation coupled with a data assimilation technique and various inter- or extrapolation algorithms, both of which are based on the observation spanning from simple equipments to satellites. In order to employ the gridded environmental data in the M&S system frequently cutting area and changing its resolution, interpolation algorithms such as linear, cubic spline, IDW, and Kriging methods are necessary to apply. These methods, however, require much time in the M&S system. This paper introduces a technic to reduce time to change the resolution of data. using the binary search method, which finds a point to interpolate quickly and interpolate data in the vicinity of. We also show the efficiency of proposed methods by way of measuring the respective elapsed times.