• Title/Summary/Keyword: Coupled calculation

Search Result 353, Processing Time 0.026 seconds

COMPUTATIONAL EFFICIENCY OF A MODIFIED SCATTERING KERNEL FOR FULL-COUPLED PHOTON-ELECTRON TRANSPORT PARALLEL COMPUTING WITH UNSTRUCTURED TETRAHEDRAL MESHES

  • Kim, Jong Woon;Hong, Ser Gi;Lee, Young-Ouk
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.263-272
    • /
    • 2014
  • Scattering source calculations using conventional spherical harmonic expansion may require lots of computation time to treat full-coupled three-dimensional photon-electron transport in a highly anisotropic scattering medium where their scattering cross sections should be expanded with very high order (e.g., $P_7$ or higher) Legendre expansions. In this paper, we introduce a modified scattering kernel approach to avoid the unnecessarily repeated calculations involved with the scattering source calculation, and used it with parallel computing to effectively reduce the computation time. Its computational efficiency was tested for three-dimensional full-coupled photon-electron transport problems using our computer program which solves the multi-group discrete ordinates transport equation by using the discontinuous finite element method with unstructured tetrahedral meshes for complicated geometrical problems. The numerical tests show that we can improve speed up to 17~42 times for the elapsed time per iteration using the modified scattering kernel, not only in the single CPU calculation but also in the parallel computing with several CPUs.

A First-principles Study on Magnetism of $Fe_2 /Ir_4$(001) Superlattice

  • Kim, Jae Il;Lee, In Gee
    • Journal of Magnetics
    • /
    • v.6 no.3
    • /
    • pp.80-82
    • /
    • 2001
  • We have investigated magnetism of $Fe_2 /Ir_4$(001) superlattice in terms of a first-principles calculation by using an all-electron full-potential linearized augmented plane-wave (FLAPW) method within the generalized gradient approximation (GGA). We considered two magnetic states, the ferromagnetic (FM) and antiferromagnetic (AFM) coupled states between the Fe layers. It was found that the FM state was energetically more stable than the AFM one by 0.166 eV. Calculated magnetic moments of the Fe layers were, in absolute values, 2.45$\mu_B$ and 2.30 $\mu_B$for the FM and AFM states, respectively. We also found that the Ir layers had very small magnetic moments less than 0.1 $\mu_B$ for both magnetic states. In all the magnetic states, the subinterface Ir layers were coupled antiferromagnetically to the interface Ir layers, while the interface Ir layers were always coupled frerromagnetically to the interface Fe layers. These results contradicted to recent experimental reports of magnetically "dead"Fe layers in Fe/Ir superlattices for which the Fe layer thickness was less than two atomic layers. We attributed that the experimentally observed "dead"Fe layers were due to possible interdiffusion between Ir and Fe layers.en Ir and Fe layers.

  • PDF

Modified discontinuous deformation analysis for rock failure: Crack propagation

  • Chen, Yunjuan;Zhang, Xin;Zhu, Weishen;Wang, Wen
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.325-336
    • /
    • 2018
  • Deformation of rock masses is not only related to rock itself, but also related to discontinuities, the latter maybe greater. Study on crack propagation at discontinuities is important to reveal the damage law of rock masses. DDARF is a discontinuous deformation analysis method for rock failure and some modified algorithms are proposed in this study. Firstly, coupled modeling methods of AutoCAD-DDARF and ANSYS-DDARF are introduced, which could improve the modeling efficiency of DDARF compared to its original program. Secondly, a convergence criterion for automatically judging the computation equilibrium is established, it could overcome subjective drawbacks of ending one calculation by time steps. Lastly but not the least, relationship between the super relaxation factor and the calculation convergence is analyzed, and reasonable value range of the super relaxation factor is obtained. Based on these above modified programs, influences on crack propagation of joint angle, joint parameters and geo-stresses' side pressure are studied.

Coupled Analysis of Heat Transfer, Fluid Flow and Solidification in the Filling of Castings (용탕충진과정에 있어서 열 및 유동을 포함한 2차원 응고해석)

  • Kim, Sung-Bin;Cho, In-Sung;Kim, Jin-Su;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.13 no.5
    • /
    • pp.424-431
    • /
    • 1993
  • A Numerical technique has been developed for the coupled heat transfer and fluid flow calculation during the casting process. In this method the SMAC technique was coupled with the concept of Volume of Fluid(VOF) to calculate melt free surface and velocity profiles within the melt, and the Energy Marker method coupled with the finite difference method was proposed for the convective and conductive heat transfer analysis in the casting. When comparing numerical calculations with experimental observations, a close correlation was evident. It has been shown that this technique is useful for proper gating and casting design, especially for thin-walled castings.

  • PDF

Design of Asymmetric Parallel Coupled-line Array using Finite Element Analysis (유한요소해석을 이용한 배열구조의 평면형 비대칭 결합선로 설계)

  • 윤재호;박준석;김형석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.6
    • /
    • pp.521-527
    • /
    • 2002
  • In this paper, we introduce a procedure to find design parameter for array coupled lines using 2-D finite element analysis. To extract design parameters using FE calculation, we set up several design conditions. In order to show the validity of our approach, we designed, simulated and fabricated a comb-line bandpass filter.

Study on Improvement of Thermal Environment by using Wind-driven Natural Ventilation on the Atrium (풍력환기에 의한 아트리움의 열환경 개선에 관한 연구)

  • Roh, Ji-Woong
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.1
    • /
    • pp.40-47
    • /
    • 2012
  • According to the advancement of computer and simulation method, it becomes possible to predict indoor climate precisely by using CFD simulation coupled with heat conduction, convection, and radiation. However, predicting the indoor climate is generally conducted by using a simplified CFD coupled simulation method since it takes quite long time to use a general CFD simulation method. In this study, a simplified CFD coupled simulation was conducted in order to find out the effect of natural ventilation by wind-driven in atrium. As a result of calculation, it was clarified that the natural ventilation driven by temperature difference was not enough to remove the accumulated heat of upper zone and the natural ventilation by wind-driven was needed. Finally, it is required to decide the window direction and size based on correct indoor climate prediction method for the effective use of natural ventilation by wind-driven.

Gain-Coupled Distributed-Feedback Effects in GaAs/AlGaAs Quantum-Wire Arrays

  • Kim, Tae-Geun;Y. Tsuji;Mutsuo Ogura
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.52-55
    • /
    • 2003
  • GaAs/AlGaAs quantum-wire (QWR) gain-coupled distributed-feedback (GC-DFB) lasers are fabricated and characterized Constant metalorganic chemical vapor deposition (MOCVD) growth is used to avoid grating overgrowth during the fabrication of DFB structures. Numerical calculation shows large gain anisotropy by optical feedback along the DFB directions near Bragg wavelength. DFB lasing via QWR active gratings is also experimentally achieved.

A Three-Dimensional Calculation of the Reactor Impedance for Planar-Type Cylindrical Inductively Coupled Plasma Sources

  • Kwon, Deuk-Chul;Yoon, Nam-Sik
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.237-241
    • /
    • 2015
  • The reactor impedance is calculated for a planar-type cylindrical inductively coupled plasma source by expanding the electromagnetic fields into their Fourier-Bessel series forms including the three-dimensional shape of the antenna. The mode excitation method is utilized to determine the electromagnetic fields based on a Poynting theorem-like relationship. From the obtained electromagnetic fields, a tractable form of the reactor impedance is obtained as a function of various plasma and geometrical parameters and applied to carry out a parametric study.

The Analysis and Application of the Parallel Coupled Line with Open Stub (개방 스터브를 갖는 평행결합선로의 해석과 응용)

  • Lee, Won-Kyun;Lee, Hong-Seob;Hwang, Hee-Yong
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.153-160
    • /
    • 2007
  • In this paper, the exact analysis of the parallel coupled line with open stub is presented. This structure shows LPF characteristics with broad stopband and sharp skirt characteristics. We derived the exact Z-matrix expression of the structure. In order to show the validation of the expression we designed $3^{th}$ order Chebyshev LPF using the structure. The simulated data excellently agreed with the predicted values by the calculation using the derived expression.

  • PDF