• Title/Summary/Keyword: Coupled calculation

Search Result 353, Processing Time 0.025 seconds

Study on the Establishment of a Safety Allowance Level of Disastrous and Hazardous Facilities in Large Cities (대도시 위해.위험시설에 대한 안전도 수용기준 정립에 관한 연구)

  • 고재선;윤명오
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.84-92
    • /
    • 2001
  • In today's world, rise in the establishment of social infrastructure resulting from population saturation in large cities has led to more extensive and frequent use of chemical materials on facilities. A result, unexpected and serious accidents, hazards, contingencies and disasters are more prevalent than ever. Such phenomenon calls for more devoted and concerted efforts towards finding ways to reduce the safety hazards that are seen to take place more often than before with the increase in the number of facilities that are prone to bring disaster and hazard coupled with the conventional safety problems that continue to exist even today. In developed countries, such challenge is addressed by various appropriate countermeasures drawn up by local professional committees on industrial facilities, whose members conduct offsite and onsite evaluation un the potential industrial disasters and its seriousness and provide their advice thereof. Against this backdrop, this study aims at identifying a comprehensive safety allowance level (safety acceptable level) when imposing limitation on the development of conventional or new facilities, for the fur pose of establishing a safety allowance level of disastrous and dangerous facilities in Korea. This is done by assessing and applying the level of danger each individual is exposed to in a randomly selected region (disastrous and dangerous areas in Seoul) based on probability of quantitative hazards, as well as simulation and calculation methods which include: i) social disaster evaluation method applying Quantified Risk Assessment of Health & Safety Executive of UK and Matrix of Risk of Evaluated Sources of Hazard; ii) Fault Tree or Event Tree Analysis and etc.

  • PDF

Wave Response Analysis for Pontoon-type Pier: Very Large Floating Structure (폰툰형 초대형 부유체식 부두의 파랑응답해석)

  • Lee, Sang-Do;Park, Sung-Hyeon;Kong, Gil-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.82-89
    • /
    • 2016
  • In this study, we proposed a pier of pontoon-type, "Very Large Floating Structure" (VLFS), with the length of 500m, breadth of 200 m and height of 2 m in Yeosu domestic port. Since this structure ought to endure wave loads for long periods at sea, it is essential to analyze the wave response characteristics. Direct-method is used to analyze the fluid-structure problem and the coupled motion of equation is used to obtain response results. The structural part is calculated by using finite element method (FEM) and the fluid part is analyzed by using boundary element method (BEM). Dynamic responses caused by the elastic deformation and rigid motion of structure are analyzed by numerical calculation. To investigate response characteristics of the pier in regular waves, several factors such as the wavelength, water depth, wave direction and flexural rigidity of structure are considered. As a result, wave response of pier changed at the point of $L/{\lambda}$ 1.5 and represented the torsional phenomenon according to the various incident waves. And the responses showed increasing tendency as the water depths increase at the incident point in case of $L/{\lambda}=8.0$ and peak point of vertical displacement amplitude moved from side to side as the flexural rigidity of structure changes.

Thermal-hydro-mechanical Modelling for an Äspö prototype repository: analysis of thermal behavior (Äspö 원형 처분장에 대한 열-수리-역학적 모델링 연구: 열적 거동 해석)

  • Lee, Jae Owan;Birch, Kenneth;Choi, Heui-Joo
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.372-382
    • /
    • 2013
  • Thermal-hydro-mechanical (THM) modeling is a critical R&D issue in the performance and safety assessment of a high-level waste repository. With an $\ddot{A}$sp$\ddot{o}$ prototype repository, its thermal behavior was analyzed and then compared with in-situ experimental data for its validation. A model simulation was used to calculate the temperature distributions in the deposition holes, deposition tunnel, and surrounding host rock. A comparison of the simulation results with the experimental data was made for deposition hole DH-6, which showed that there was a temperature difference of $2{\sim}5^{\circ}C$ depending on the location of the measuring points, but there was a similar trend in the evolution curves of temperature as a function of time. It was expected that the coupled modeling of the thermal behavior with the hydro-mechanical behavior in the buffer and backfill of the $\ddot{A}$sp$\ddot{o}$ prototype repository would give a better agreement between the experimental and model calculation results.

MnIr Thickness Dependence of Torque Signals in CoFe/MnIr Thin Films (CoFe/MnIr 박막 재료에서 MnIr의 두께에 따른 토오크 신호 분석)

  • Kim, Dong Young;Yoon, Seok Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.5
    • /
    • pp.140-145
    • /
    • 2014
  • We analyzed the MnIr thickness dependence of torque signals measured in exchange coupled CoFe/MnIr ($t_{AF}$) bilayers. The measured torque signals were compared with calculated ones by Stoner-Wohlfarth model. The exchange coupling anisotropy $J_c$ was considered for the model calculation between ferromagnetic (F) and antiferromagnetic (AF) layers with uniaxial anisotropy constant of $K_F$ and $K_{AF}$, respectively. The rotational losses were appeared in the range of $0.5t_c$ < $t_{AF}$ < $t_c$ ($=J_c/K_{AF}$) by the unpinned AF layer. While, the unidirectional anisotropy ($J_k$) was caused by the pinned AF layer at $t_{AF}$ > $t_c$. The critical thickness of MnIr layer was $t_c$ = 3.4 nm in CoFe/MnIr bilayers. The rotational losses behavior as shown in $t_{AF}$ = 3 nm sample were explained by the random orientation of the easy axis of AF grains. The unidirectional anisotropy obtained from torque signal of $t_{AF}$ = 10 nm sample was $J_k=0.63J_c$. Thus, the unidirectional anisotropy can be enhanced up to $J_k=J_c$ by aligning the AF easy axis.

A Study on the Fabrication LiNbO3 Optical Waveguide (LiNbO3 광도파로 제작에 관한 연구)

  • Kim, Sun-Yeob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6221-6226
    • /
    • 2015
  • In this paper, waveguide analysis was interpreted as an optical waveguide using the feedback perturbation method simple and easy to apply compared to the analysis method, while the other almost identical to the numerical calculation method. In addition, efficient coupling with an optical transmission line of optical fiber and the waveguide form the thin film of different functional elements is required in order to achieve the full optical communication system. However, problems arise, such as the light field (field) and the decrease of the access efficiency due to inconsistency in the distribution characteristics of the connection surface by the difference in size of the cross section thereof when connecting the optical fiber and the waveguide directly to the combination of a thin film. Therefore propose a new type of connector structure to increase the efficiency of the connection when connecting the optical fiber waveguide and the thin film was analyzed by applying a coupled mode theory, the binding efficiency of the modified contactor. And by diffusing Ti on the $LiNbO_3$ substrate and a wide range of applications in the manufacture of integrated optical material made of a current low-loss Ti: $LiNbO_3$ optical waveguide and making the Y-branch waveguide, and the properties were confirmed.

Design of a Compact GPS/MEMS IMU Integrated Navigation Receiver Module for High Dynamic Environment (고기동 환경에 적용 가능한 소형 GPS/MEMS IMU 통합항법 수신모듈 설계)

  • Jeong, Koo-yong;Park, Dae-young;Kim, Seong-min;Lee, Jong-hyuk
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.68-77
    • /
    • 2021
  • In this paper, a GPS/MEMS IMU integrated navigation receiver module capable of operating in a high dynamic environment is designed and fabricated, and the results is confirmed. The designed module is composed of RF receiver unit, inertial measurement unit, signal processing unit, correlator, and navigation S/W. The RF receiver performs the functions of low noise amplification, frequency conversion, filtering, and automatic gain control. The inertial measurement unit collects measurement data from a MEMS class IMU applied with a 3-axis gyroscope, accelerometer, and geomagnetic sensor. In addition, it provides an interface to transmit to the navigation S/W. The signal processing unit and the correlator is implemented with FPGA logic to perform filtering and corrrelation value calculation. Navigation S/W is implemented using the internal CPU of the FPGA. The size of the manufactured module is 95.0×85.0×.12.5mm, the weight is 110g, and the navigation accuracy performance within the specification is confirmed in an environment of 1200m/s and acceleration of 10g.

Residual characteristics of insecticide flubendiamide in kale (케일 중 살충제 Flubendiamide의 잔류 특성)

  • Kim, Hyun-Jin;Hwang, Kyu-Won;Sun, Jung-Hun;Lee, Tae-Hyun;Jeong, Kyoung-Su;Moon, Joon-Kwan
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.3
    • /
    • pp.173-181
    • /
    • 2022
  • This study was carried out to investigate the residual characteristics of flubendiamide in kale to establish pre-harvest residue limits (PHRL) and the removal efficiency according to the washing solvent and method. Field tests were conducted at two different greenhouses, field 1 (Anseong-si, Gyeonggi-do) and field 2 (Incheon-si, Gyeonggi-do). According to the safe use guidelines kale was sprayed with flubendiamide twice every 10 days and harvested 0 (after 2 h), 1, 2, 3, 5, 7 and 10 days after the final application. The biological half-live of flubendiamide in kale was calculated based on dissipation curves of the pesticide in samples analyzed by liquid chromatography coupled with tandem mass spectrometry. In the analysis, method limits of quantitation (MLOQ) were 0.01 mg/kg, and recoveries performed with two different fortification levels of 10 MLOQ and maximum residue limit (0.7 mg/kg) were 104.2±3.6 and 101.9±10.2%, respectively. The dissipation rate constant of flubendiamide in kales were 0.2437 at field 1 and 0.1981 at field 2. PHRL calculation equations obtained using the dissipation constants estimated as follows: if the residual concentration of flubendiamide in kale on 10 days before harvest is less than 8.0 mg/kg, the residual concentration on the harvest would be under MRL. The removal of flubendiamide from kale was the greatest when it was washed with vinegar (39.8%), followed by baking soda (31.7%), calcium powder (30.2%), neutral detergent (27.2%), and tap water (15.9%). The results of this study would be useful for both farmers and consumers to produce or consume safe agricultural products.

Closed Integral Form Expansion for the Highly Efficient Analysis of Fiber Raman Amplifier (라만증폭기의 효율적인 성능분석을 위한 라만방정식의 적분형 전개와 수치해석 알고리즘)

  • Choi, Lark-Kwon;Park, Jae-Hyoung;Kim, Pil-Han;Park, Jong-Han;Park, Nam-Kyoo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.182-190
    • /
    • 2005
  • The fiber Raman amplifier(FRA) is a distinctly advantageous technology. Due to its wider, flexible gain bandwidth, and intrinsically lower noise characteristics, FRA has become an indispensable technology of today. Various FRA modeling methods, with different levels of convergence speed and accuracy, have been proposed in order to gain valuable insights for the FRA dynamics and optimum design before real implementation. Still, all these approaches share the common platform of coupled ordinary differential equations(ODE) for the Raman equation set that must be solved along the long length of fiber propagation axis. The ODE platform has classically set the bar for achievable convergence speed, resulting exhaustive calculation efforts. In this work, we propose an alternative, highly efficient framework for FRA analysis. In treating the Raman gain as the perturbation factor in an adiabatic process, we achieved implementation of the algorithm by deriving a recursive relation for the integrals of power inside fiber with the effective length and by constructing a matrix formalism for the solution of the given FRA problem. Finally, by adiabatically turning on the Raman process in the fiber as increasing the order of iterations, the FRA solution can be obtained along the iteration axis for the whole length of fiber rather than along the fiber propagation axis, enabling faster convergence speed, at the equivalent accuracy achievable with the methods based on coupled ODEs. Performance comparison in all co-, counter-, bi-directionally pumped multi-channel FRA shows more than 102 times faster with the convergence speed of the Average power method at the same level of accuracy(relative deviation < 0.03dB).

Calculation and Monthly Characteristics of Satellite-based Heat Flux Over the Ocean Around the Korea Peninsula (한반도 주변 해양에서 위성 기반 열플럭스 산출 및 월별 특성 분석)

  • Kim, Jaemin;Lee, Yun Gon;Park, Jun Dong;Sohn, Eun Ha;Jang, Jae-Dong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.519-533
    • /
    • 2018
  • The sensible heat flux (SHF)and latent heat flux (LHF) over Korean Peninsula ocean during recent 4 years were calculated using Coupled Ocean-Atmosphere Response Experiment (COARE) 3.5 bulk algorithm and satellite-based atmospheric-ocean variables. Among the four input variables (10-m wind speed; U, sea surface temperature; $T_s$, air temperature; $T_a$, and air humidity; $Q_a$) required for heat flux calculation, Ta and $Q_a$, which are not observed directly by satellites, were estimated from empirical relations developed using satellite-based columnar atmospheric water vapor (W) and $T_s$. The estimated satellite-based $T_a$ and $Q_a$ show high correlation coefficients above 0.96 with the buoy observations. The temporal and spatial variability of monthly ocean heat fluxes were analyzed for the Korean Peninsula ocean. The SHF showed low values of $20W/m^2$ over the entire areas from March to August. Particularly, in July, SHF from the atmosphere to the ocean, which is less than $0W/m^2$, has been shown in some areas. The SHF gradually increased from September and reached the maximum value in December. Similarly, The LHF showed low values of $40W/m^2$ from April to July, but it increased rapidly from autumn and was highest in December. The analysis of monthly characteristics of the meteorological variables affecting the heat fluxes revealed that the variation in differences of temperature and humidity between air and sea modulate the SHF and LHF, respectively. In addition, as the sensitivity of SHF and LHF to U increase in winter, it contributed to the highest values of ocean heat fluxes in this season.

Review of Policy Direction and Coupled Model Development between Groundwater Recharge Quantity and Climate Change (기후변화 연동 지하수 함양량 산정 모델 개발 및 정책방향 고찰)

  • Lee, Moung-Jin;Lee, Joung-Ho;Jeon, Seong-Woo;Houng, Hyun-Jung
    • Journal of Environmental Policy
    • /
    • v.9 no.2
    • /
    • pp.157-184
    • /
    • 2010
  • Global climate change is destroying the water circulation balance by changing rates of precipitation, recharge and discharge, and evapotranspiration. The Intergovernmental Panel on Climate Change (IPCC 2007) makes "changes in rainfall pattern due to climate system changes and consequent shortage of available water resource" a high priority as the weakest part among the effects of human environment caused by future climate changes. Groundwater, which occupies a considerable portion of the world's water resources, is related to climate change via surface water such as rivers, lakes, and marshes, and "direct" interactions, being indirectly affected through recharge. Therefore, in order to quantify the effects of climate change on groundwater resources, it is necessary to not only predict the main variables of climate change but to also accurately predict the underground rainfall recharge quantity. In this paper, the authors selected a relevant climate change scenario, In this context, the authors selected A1B from the Special Report on Emission Scenario (SRES) which is distributed at Korea Meteorological Administration. By using data on temperature, rainfall, soil, and land use, the groundwater recharge rate for the research area was estimated by period and embodied as geographic information system (GIS). In order to calculate the groundwater recharge quantity, Visual HELP3 was used as main model for groundwater recharge, and the physical properties of weather, temperature, and soil layers were used as main input data. General changes to water circulation due to climate change have already been predicted. In order to systematically solve problems associated with how the groundwater resource circulation system should be reflected in future policies pertaining to groundwater resources, it may be urgent to recalculate the groundwater recharge quantity and consequent quantity for using via prediction of climate change in Korea in the future and then reflection of the results. The space-time calculation of changes to the groundwater recharge quantity in the study area may serve as a foundation to present additional measures for the improved management of domestic groundwater resources.

  • PDF