• Title/Summary/Keyword: Coupled Stripline Dipole

Search Result 2, Processing Time 0.017 seconds

Printed 1x2 Dipole Array Antenna Fed by Tapered Stripline for Wideband (테이퍼된 스트립 선로로 급전된 광대역 프린트 1X2 다이폴 배열 안테나)

  • Seung-Yeop Rhee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.641-646
    • /
    • 2024
  • This paper is studied for the design and experiment of a wideband printed 1x2 dipole array antenna for 3.5GHz band application. The printed dipole antenna used in the array antenna was implemented in the form of a rectangular strip, and was consisted with a broadside coupled stripline (BCS). The feed line was designed to be tapered for broadband impedance matching. As a result of comparing the simulation results and measurement results, it was found that the two results were in good agreement with 2.8% error(100MHz shift @3.5GHz). As a result of the experiment, based on VSWR=2, a bandwidth of about 16% was obtained from the center frequency of 3.5 GHz to 3.15~3.70 GHz.

Printed Dipole Antenna Fed by Broadsided Coupled Stripline for Wideband (측면 결합 스트립 선로를 이용한 광대역 프린트 다이폴 안테나)

  • Seung-Yeop, Rhee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1033-1038
    • /
    • 2022
  • In this paper, the design of a printed dipole antenna fed by broadside coupled striplines (BCS) for the 3.5GHz band is described. The two fins of the bow tie are, respectively, on the two sides of the substrate. The feeding balanced lines adopted for 1×2 array are the BCS. The obtained numerical results are in good agreement with experimental data. Through experiments with printed dipole antennas of various extended angles, the printed dipole antenna exhibits the wide bandwidth in the desired frequency band, which has a bandwidth of 28% for VSWR < 2.0 : 1. And within this bandwidth, This printed dipole antenna achieves a stable radiation pattern. It is found that the narrow band and feeding for array characteristic which is a disadvantage of the conventional printed dipole antenna can be improved. The radiation pattern showed omnidirectional characteristics and the maximum gain was about 4.4dBi.