DOI QR코드

DOI QR Code

Printed 1x2 Dipole Array Antenna Fed by Tapered Stripline for Wideband

테이퍼된 스트립 선로로 급전된 광대역 프린트 1X2 다이폴 배열 안테나

  • Seung-Yeop Rhee (Dept. of Electronic Comm., Chonnam National University)
  • 이승엽 (전남대학교 전자통신전공)
  • Received : 2024.06.30
  • Accepted : 2024.08.12
  • Published : 2024.08.31

Abstract

This paper is studied for the design and experiment of a wideband printed 1x2 dipole array antenna for 3.5GHz band application. The printed dipole antenna used in the array antenna was implemented in the form of a rectangular strip, and was consisted with a broadside coupled stripline (BCS). The feed line was designed to be tapered for broadband impedance matching. As a result of comparing the simulation results and measurement results, it was found that the two results were in good agreement with 2.8% error(100MHz shift @3.5GHz). As a result of the experiment, based on VSWR=2, a bandwidth of about 16% was obtained from the center frequency of 3.5 GHz to 3.15~3.70 GHz.

본 논문은 3.5GHz 대역 응용을 위한 광대역 프린트 1x2 다이폴 배열 안테나의 설계 및 실험에 관해 연구 한 것이다. 프린트 배열 다이폴 안테나의 각각 형태는 직사각형 스트립 모양으로 구현되었으며, 광대역 특성을 갖도록 양면의 다이폴 안테나 구조는 측면 결합 선로(BCS: broadside coupled stripline)로 구성된다. 급전선은 광대역 임피던스 정합을 위해 테이퍼형으로 설계되었다. 시뮬레이션 결과와 측정 결과를 비교한 결과, 두 결과가 2.8%(100MHz 이동 @3.5GHz) 차이를 보여 서로 잘 일치하는 것으로 나타났다. 실험 결과 VSWR=2인 점을 기준으로 대역폭은 중심 주파수 3.5 GHz에서 3.15~3.70 GHz까지 약 16%의 대역폭을 얻었다.

Keywords

References

  1. Constantine, A. B., Antenna Theory Analysis and Design 3rd, p.207, John Wiley & Sons, New York, 2005. https://doi.org/10.1109/MAP.1982.27654 
  2. Kin-Lu Wong, Compact and Broadband Microstrip Antennas, Wiley-Interscience, 2014. http://dx.doi.org/10.1002/0471221112.ch1 
  3. Yong-Wook Park,"A Study on The Characteristics of U-slot Microstrip Antenna", J. of The Korea Institute of Electronic Communication Sciences, vol. 19, no. 1, 2024, pp. 25-30. https://doi.org/10.13067/JKIECS.2024.19.1.25 
  4. Joong-Han Yoon,"Design and Fabrication of Dual Linear Polarization Patch Antenna with Aperture Coupled Feeding Structure", J. of The Korea Institute of Electronic Communication Sciences, vol. 18, no. 6, 2023, pp. 1015-1022. https://doi.org/10.13067/JKIECS.2023.18.6.1015 
  5. Soily, Srabonty, Kim, Dong-Woo, Oh, Soon-Soo, "Use of Sleeve Baluns to Improve the Radiation Pattern of a Broadband Biconical Antenna", J. of The Korea Institute of Electronic Communication Sciences, vol. 17, no. 4, 2022, pp. 563-570. https://doi.org/10.13067/JKIECS.2022.17.4.563 
  6. Yun-Qi Zhang, Jian-Wei Rong, Xi Li, Lin Yang, and Shu-Xi Gong, "Novel wideband omnidirectional antenna for wireless applications," Progress In Electromagnetics Research C, vol. 40, no.2, 2013, pp. 257-267. http://dx.doi.org/10.2528/PIERC13050401 
  7. Pravin Dalvadi, Amrut Patel, D. H. Patel, G. D. Makwana, " Design of Wideband Bowtie Antenna using Tapered Balun for Industrial, Scientific and Medical Band Application", Information Technology & Electrical Engineer in Journal, vol. 10, no.3, 2021, pp. 61-66. https://www.academia.edu/download/95856933/v10no3june21_pdf7.pdf  10no3june21_pdf7.pdf
  8. Shih-Cheng Lin and Chi-Wen Hsieh, Chun-Chieh Wang, Kuan-Yu Lin, and Tai-Lang Jong, "Bow-Tie Antenna Fed by Microstrip Balun Filter With Designable Bandwidth and Extended Stopband" Proceedings of the 45th European Microwave Conference Sept. 7-10, Paris, Franc,, 2015, pp.1053-1056. https://doi.org/10.1109/EuMC.2015.7345948 
  9. Guiping Zheng, Ahmed A. Kishk, Allen W. Glisson, and Alexander B. Yakovlev, "A Broad band Printed BowTie Antenna With A Simplified Balanced Feed" Microwave And Optical Technology Letters, vol. 47, no. 6, 2005. pp.534-536. https://doi.org/10.1002/mop.21221 
  10. Wei, K. P., Z. J. Zhang, and Z. H. Feng, "Design of a dual band omnidirectional planar microstrip antenna array," Progress In Electromagnetics Research, vol. 126, no. 1,2012, pp. 101~120. http://dx.doi.org/10.2528/PIER11112101