• Title/Summary/Keyword: Coupled Method

Search Result 3,670, Processing Time 0.037 seconds

Estimation of Antenna Correlation Coefficient of N-Port Lossy MIMO Array

  • Saputro, Susilo Ady;Nandiwardhana, Satya;Chung, Jae-Young
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.303-308
    • /
    • 2018
  • This paper proposes a simple yet accurate method for estimating the antenna correlation coefficient (ACC) of a high-order multiple-input multiple-output (MIMO) antenna. The conventional method employed to obtain the ACC from three-dimensional radiation patterns is costly and difficult to measure. An alternate method is to use the S-parameters, which can be easily measured using a network analyzer. However, this method assumes that the antennas are highly efficient, and it is therefore not suitable for lossy MIMO antenna arrays. To overcome this limitation, we define and utilize the non-coupled radiation efficiency in the S-parameter-based ACC formula. The accuracy of the proposed method is verified by the simulation results of a 4-port highly coupled lossy MIMO array. Further, the proposed method can be applied to N-port arrays by expanding the calculation matrix.

Determination of the Dynamic Coefficients of the Coupled Journal and Thrust Bearings by the Perturbation Method (수학적 섭동법을 이용한 저널과 스러스트가 연성된 유체 동압 베어링의 동특성 계수 해석)

  • Lee, Sang-Hoon;Jang, Gun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.746-753
    • /
    • 2006
  • This paper proposes a method to calculate the stiffness and the damping coefficients of the coupled journal and thrust bearings. The Reynolds equations and their perturbation equations are transformed to the finite element equations by considering the continuity of pressure and flow at the interface between bearings. The Reynolds boundary condition is used in the numerical analysis to simulate the cavitation phenomena. The dynamic coefficients of the proposed method are compared with those of the numerical differentiation of the loads with respect to finite displacements and velocities of bearing center. It shows that the proposed method is more accurate and efficient than the differentiation method.

A method for static and dynamic analyses of stiffened multi-bay coupled shear walls

  • Bozdogan, Kanat Burak;Ozturk, Duygu
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.479-489
    • /
    • 2008
  • In this study an approximate method based on the continuum approach and transfer matrix method for static and dynamic analyses of stiffened multi-bay coupled shear walls is presented. In this method the whole structure is idealized as a sandwich beam. Initially the differential equation of this equivalent sandwich beam is written then shape functions for each storey is obtained by the solution of differential equations. By using boundary conditions and storey transfer matrices which are obtained by these shape functions, system modes and periods can be calculated. Reliability of the study is shown with a few examples. A computer program has been developed in MATLAB and numerical samples have been solved for demonstration of the reliability of this method. The results of the samples show the agreement between the present method and the other methods given in literature.

Determination of the Dynamic Coefficients of the Coupled Journal and Thrust Bearings by the Perturbation Method (수학적 섭동법을 이용한 저널과 스러스트가 연성된 유체 동압 베어링의 동특성 계수 해석)

  • Lee, Sang-Hoon;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.666-671
    • /
    • 2006
  • This paper proposes a method to calculate the stiffness and the damping coefficients of the coupled journal and thrust bearings. The Reynolds equations and their perturbation equations are transformed to the finite element equations by considering the continuity of pressure and flow at the interface between bearings. The Reynolds boundary condition is used in the numerical analysis to simulate the cavitation phenomena. The dynamic coefficients of the proposed method are compared with those of the numerical differentiation of the loads with respect to finite displacements and velocities of bearing center. It shows that the proposed method is more accurate and efficient than the differentiation method.

  • PDF

HYDROELASTIC VIBRATION ANALYSIS OF TWO FLEXIBLE RECTANGULAR PLATES PARTIALLY COUPLED WITH A LIQUID

  • Jeong, Kyeong-Hoon;Kim, Jong-Wook
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.335-346
    • /
    • 2009
  • This paper deals with a hydroelastic vibration analysis of two rectangular plates partially coupled with a liquid, which is bounded by two plates and two rigid side walls. The wet displacement of each plate is assumed to be a combination of the modal functions of a dry uniform beam with a clamped boundary condition. As the liquid is assumed to be an ideal liquid, the displacement potential satisfying the Laplace equation is determined so that the liquid boundary conditions can meet the requirements at the rigid surfaces and the free liquid surface. The wet dynamic modal functions of each plate are expanded by using the finite Fourier transform to obtain an appropriate form of the compatibility requirement along the contacting surfaces between the plates and the liquid. The liquid-coupled natural frequencies of the plates are derived by using the Rayleigh-Ritz method. Finite element analyses using commercial software are carried out to verify the proposed theory. It is observed that the theoretical method agrees excellently with the three-dimensional finite element analyses results. The effects of the liquid depth and the liquid thickness on the normalized natural frequencies are investigated to identify the dynamic characteristics of the liquid coupled system.

3D Nonlinear Fully Coupled Simulation of Cable and Tow-fish System (케이블-수중 예인체 시스템의 3차원 비선형 완전 연성해석)

  • Go, Gwangsoo;Lee, Euntaek;Ahn, Hyung Taek
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.458-467
    • /
    • 2016
  • In this paper, a strongly coupled method for investigating the interaction between a cable and tow-fish is presented. The nodal position finite element method was utilized to analyze the nonlinear cable dynamics, and 6DOF equations of motion were employed to describe the 3D rigid body motion of the tow-fish. Combining cable and tow-fish systems into a single formulation allowed the two nonlinear systems to be strongly coupled into a unified nonlinear system. This strongly coupled system was numerically integrated in the time domain using a predictor/multi-corrector Newmark algorithm. To demonstrate the validity, efficacy, and applicability of the current approach, two different scenarios (virtual and sea trial) were simulated, and the simulation results were validated using the physical plausibility and the sea trial test.

Coupled CFD-FEM simulation of hydrodynamic responses of a CALM buoy

  • Gu, Haoyuan;Chen, Hamn-Ching;Zhao, Linyue
    • Ocean Systems Engineering
    • /
    • v.9 no.1
    • /
    • pp.21-42
    • /
    • 2019
  • In this paper, the Finite-Analytic Navier-Stokes (FANS) code is coupled with an in-house finite-element code to study the dynamic interaction between a floating buoy and its mooring system. Hydrodynamic loads on the buoy are predicted with the FANS module, in which Large Eddy Simulation (LES) is used as the turbulence model. The mooring lines are modeled based on a slender body theory. Their dynamic responses are simulated with a nonlinear finite element module, MOORING3D. The two modules are coupled by transferring the forces and displacements of the buoy and its mooring system at their connections through an interface module. A free-decay model test was used to calibrate the coupled method. In addition, to investigate the capability of the present coupled method, numerical simulations of two degree-of-freedom vortex-induced motion of a CALM buoy in uniform currents were performed. With the study it can be verified that accurate predictions of the motion responses and tension responses of the CALM buoy system can be made with the coupling CFD-FEM method.

Employing GDQ method for exploring undamped vibrational performance of CNT-reinforced porous coupled curved beam

  • Moein A. Ghandehari;Amir R. Masoodi
    • Advances in nano research
    • /
    • v.15 no.6
    • /
    • pp.551-565
    • /
    • 2023
  • Coupled porous curved beams, due to their low weight and high flexibility, have many applications in engineering. This study investigates the vibration behavior of coupled porous curved beams in different boundary conditions. The system consists of two curved beams connected by a mid-layer of elastic springs. These beams are made of various materials, such as homogenous steel foam, and composite materials with PMMA (polymethyl methacrylate) and SWCNT (single-walled carbon nanotube) used as the matrix and nanofillers, respectively. To obtain equivalent material properties, the role of mixture (RoM) was employed, followed by the implementation of the porosity function. The system's governing equations were obtained by employing FSDT and Hamilton's law. To investigate thermal vibration, temperature was implemented as a load in the governing equations. The GDQ method was used to solve these equations. To demonstrate the applicability of the GDQ method in calculating the frequencies of the system and the correctness of the developed program, a validation study was conducted. After validation, numerous examples were presented to investigate the behavior of single and coupled curved beams in various material properties and boundary conditions. The results indicate that the frequencies of the curved beams and the system depend highly on the amount of porosity (n) and the distribution pattern. The system frequencies decreased with an increase in the porosity coefficient. The stiffness of the springs had no effect on the first mode frequency but increased frequencies of other modes in a specific range. The frequencies of the system decreased with an increase in environmental temperature.

A new method of contour error modeling for cross-coupled control of CNC machines (CNC 공작 기계의 상호 결합 제어를 위한 새로운 윤곽 오차 모델링 방법)

  • Joo, Jeong-Hong;Lee, Hyun-Chul;Lee, Yun-Jung;Jeon, Gi-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.389-397
    • /
    • 1997
  • In this paper, we propose a new method of contour error modeling for cross-coupled control of CNC machines. This modeling method is based on the information that the interpolator of a CNC machine generates knot points per each sampling time in order to approximate a given curved path as a series of small straight-line segments. The merits of the proposed method are : (1) its applicability for arbitrary curved contours and (2) its ability to calculate contour errors more accurately than the other conventional methods. The proposed method is evaluated and compared with the conventional methods using the three typical curved trajectories by computer simulations. Furthermore, it is shown that the cross-coupled controller based on this proposed error model improves contouring accuracy more effectively than the other methods.

  • PDF

Mode Analysis of Coupled System (커플시스템의 모우드 분석 연구)

  • Kim, Jong-Do;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.3
    • /
    • pp.28-34
    • /
    • 2010
  • The suggested coupled system was analyzed using FRF and mode analysis. The eigen-mode of FRF analysis is consistent with that of conventional FFT in spectrum. Also, three numerical responses of second order system, which are coupled, was obtained using the Runge-Kutta Gill method. The displacement, velocity and acceleration response were calculated for the numerical analysis of coupled system and the displacement response was used for the calculation of FRF of this system. Using the mixed response of 1st and 2nd mode in example, the FRF was analysed for the analysis of mixed mode coupled system. Also, its mode shape was acquired by solving the eigen problem of coupled system.