• Title/Summary/Keyword: Coupled Line

Search Result 719, Processing Time 0.031 seconds

High Efficient Phase Shifters Using Defected Ground Structures (결함 접지 구조를 이용한 고성능 위상 천이기)

  • Han Sang-Min;Kim Chul-Soo;Ahn Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.1 s.104
    • /
    • pp.1-7
    • /
    • 2006
  • New phase shifters with higher phase shift values are presented using defected ground structures(DGSs). The varactor diodes are mounted on DGSs of termination loads to control the large phase variation of the DGS at resonance. Two types of phase shifters are implemented with a branch-line and a coupled line hybrid. The experimental results of the proposed phase shifters show $135\%$ and $221\%$ increases in maximum phase shills, respectively, compared with those of conventional ones.

A Parallel Coupled Line Band Pass Filter Using Defected Ground Structure Inverter (결함 기저면 구조 인버터를 이용한 평행 결합 선로 대역 통과 필터)

  • Kim, In-Seon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.1
    • /
    • pp.54-60
    • /
    • 2008
  • In this paper, the novel method is proposed to realize the parallel coupled line band pass filter using defected ground structure(DGS) inverter. This method provides simple solution which easily resolves the limit of line width happened due to high impedance on the occasion of designing filter composed of line inverter. On the basis of the proposed method and conventional method, the band pass filters haying 13.3% fractional bandwidth were designed and implemented. The measured data of two filters show usually good agreement with each other, but on the other hand the length of proposed filter become shorten about 15mm and the width of inverter line was expanded two times or more in comparison with conventional filter.

Broad-Coupled Line Coupler Design using multilayer $SrTiO_3$/Organic composites (다층구조 $SrTiO_3$/Organic composites를 이용한 Broad Coupled Line Coupler 설계)

  • Youn, Je-Hyun;Yoo, Chan-Sei;Yoo, Myong-Jae;Park, Se-Hoon;Kim, Dong-Su;Lee, Woo-Sung;Yook, Jong-Gwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.45-45
    • /
    • 2008
  • $SrTiO_3$/Organic composites 는 Inorganic/organic 복합재료로, 유전 특성이 우수하고, 저온하여 제조단가의 감소가 가능하다. 이를 바탕으로 $SrTiO_3$/Organic composites 복합재를 이용한 가능성을 확인하기 위해 Multilayer 구조의 Coupler를 설계, 제작 후 특성을 분석하였다. Coupler 는 RF signal을 분기하기 위한 목적으로 평행한 한 쌍의 Conductor line 구조를 가진다. 2개의 Line 의 길이를 특정주파수 $f_0$의 wavelength $\lambda$/4 로 설계하여 서로 근접 시켰을 때 $f_0$를 중심으로 RF 신호 분기 현상이 나타난다. 보다 넓은 대역에 걸쳐서 신호분기를 하기 위해서는 두 line 간의 간격을 좁혀 Signal coupling 효과를 증가 시킨다. single layer conductor 구조에서는 물리적인 한계가 있으므로, multilayer 구조를 사용하면 보다 넓은 대역의 Coupled line coupler 로서 기능하게 된다.

  • PDF

Design of Dual-band Stacked Meander Line Antenna with Double Coupled Line (이중 커플드 라인을 이용한 이중 대역 적층형 미앤더 라인 안테나)

  • Jung, Jin-Woo;Seo, In-Jong;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.10 s.113
    • /
    • pp.993-999
    • /
    • 2006
  • This paper presents the design simulation, implementation, and measurement of a miniaturized DCS, PCS / Satellite DMB dual-band stacked chip antenna with double coupled line for mobile communication terminals. A stacked meander is realized by using a via hole with height of 0.8 mm and a diameter of 0.35 mm to connect upper- and lower-layer meander sections for a reduction of the dimensions of the antenna. In addition the stacked meander chip antenna is extended by a double coupled-line to achieve two different radiation modes. A ratio of the first frequency and second frequency vary with the geometrical parameter of coupled lines. The fabricated antenna used FR-4 substrate with relative permittivity of 4.2. And its dimensions are $15.2{\times}7{\times}0.8mm^3$. The measured impedance bandwidth(VSRW<2) are 244 and 120 MHz at the operating frequency, respectively.

Six-port direct conversion receiver front-end with carrier recovery circuit and phase shifter using multi-layer coupled line (다층형 결합 선로를 이용한 반송파복원기와 위상 변위기를 갖는 6-단자 직접 변환 수신 전처리부)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2267-2272
    • /
    • 2009
  • The six-port direct conversion receiver front-end that is comprised of a carrier recovery and a phase shifter, which gets the same structure with six-port phase correlator using the multi-layer coupled line, was designed and fabricated in this paper. The six-port element that is comprised of the power divider and the hybrid coupler is designed by multi-layer coupled line structure. The multi-coupled structure is utilized as the basic structure in receiver phase correlator, carrier recovery circuit and phase shifter. The receiver front-end with the same multi-layer coupled line structure for the receiver elements shows the simple structure and no difficulty in integration. The fabricated multi-layer coupled six-port receiver front-end re-generates the carrier signal with a constant phase and demodulates the PSK transmission signal.

The Analysis and Application of the Parallel Coupled Line with Open Stub (개방 스터브를 갖는 평행결합선로의 해석과 응용)

  • Lee, Won-Kyun;Lee, Hong-Seob;Hwang, Hee-Yong
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.153-160
    • /
    • 2007
  • In this paper, the exact analysis of the parallel coupled line with open stub is presented. This structure shows LPF characteristics with broad stopband and sharp skirt characteristics. We derived the exact Z-matrix expression of the structure. In order to show the validation of the expression we designed $3^{th}$ order Chebyshev LPF using the structure. The simulated data excellently agreed with the predicted values by the calculation using the derived expression.

  • PDF

Design of an extremely miniaturized branch-line coupler

  • Kang, In Ho;Li, Xi Qiang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.995-999
    • /
    • 2014
  • In this paper, a new size-reduction approach for branch-line coupler is introduced which uses parallel end-shorted coupled lines with lumped capacitors. The characteristic of the new design was analyzed using even-odd mode method, and simulated on HFSS before fabricated on the FR4 epoxy glass cloth copper-clad plat (CCL) PCB substrate at center frequency of 1 GHz. The electrical length of transmission line was reduced to 15 degrees, therefore the size of branch-line coupler was largely reduced approximately maintaining the same characteristic around the stable center frequency. The insertion loss of the branch-line coupler filter was -4.39 dB. The size of the overall hybrid is $20mm{\times}20mm$. Measurements results were well agreed with the simulated ones.

Design of Coupled-line Band-pass Filter Using New Equivalent Circuit of Tapped-line (탭 선로의 새로운 등가 회로를 이용한 결합 선로 대역 통과 필터 설계)

  • Lee, Il-Woo;Han, Seung-Hyun;Yun, Tae-Soon;Kwoun, Sung-Su;Hong, Tae-Ui;Lee, Jong-Chul
    • 한국ITS학회:학술대회논문집
    • /
    • v.2006 no.10
    • /
    • pp.187-190
    • /
    • 2006
  • In this paper, the equivalent circuit of tapped-line that is applied in the feeding of the band-pass filter with high coupling is suggested and the value of an equivalent circuit is mathematically defined. An equivalent circuit of tapped-line is composed by open stub and additional transmission line, and the electrical lengths of stub and line can be obtained by the impedance of resonator and the inverter. The new equivalent circuit of tapped-line can be simply applied of design of band-pass filter and leads to very good agreement compared with theoretical value. The coupled-line band-pass filter using equivalent circuit of tapped-line shows the insertion loss of 1.97 dB and the return loss of 18.5 dB at the center frequency of 5.8 GHz.

  • PDF

A Cost-Effective, Single-Phase Line-Interactive UPS System that Eliminates Inrush Current Phenomenon for Transformer-Coupled Loads

  • Bukhari, Syed Sabir Hussain;Atiq, Shahid;Lipo, Thomas A.;Kwon, Byung-il
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.675-682
    • /
    • 2016
  • Sudden voltage drops and outages frequently disturb the operation of sensitive loads for domestic, commercial, and industrial use. In some cases, these events may even impair the functioning of relevant equipment. To maintain power under such conditions, a UPS system is usually installed. Once a disturbance happens at the grid side, the line-interactive UPS system takes over the load to prevent an interruption. But, due to magnetic saturation of the transformer, a significant inrush current may occur for the transformer-coupled loads during this transition. The generation of such transient currents may in turn decrease the line voltage and activates over-current protecting devices of the system. In this work, a cost-effective, line-interactive UPS system is proposed that eliminates the inrush current phenomenon associated with transformer-coupled loads. The strategy was implemented by connecting a standard current-regulated voltage source inverter (CRVSI) to the secondary winding of the load transformer. During any transient condition at the grid side, the load current is monitored and regulated to achieve either seamless compensation of the load current or complete transferal of load from grid to the inverter. Experimental results were obtained for a prototype under all possible operating conditions so as to validate the performance of the proposed topology.

Compact Branch-line Power Divider Using Connected Coupled-line Structure

  • Yun, Tae-Soon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.109-114
    • /
    • 2018
  • In order to improve performance for the size of the BLPD, the CCL is used for the realization as the delay line. As realizing lower coupling coefficient and lower characteristic impedance, the CCL has good performance of the phase delay. The CCL is applied as the compact BLPD with optimized coupling factor and matched impedance because the lower coupling coefficient and lower characteristic impedance are increased the size and the loss, respectively. Designed BLPD using the CCL has the size of $0.13{\lambda}_g{\times}0.13{\lambda}_g$ and the size-reduction ratio of fabricated BLPD using the CCL has 58.5% ($21.08{\times}21.40mm^2$). Also, fabricated BLPD is measured the insertion loss of 3.16dB at the center frequency of 1.78GHz and the 20dB bandwidth is 9.58%. Differenced magnitude and phase between threw port and coupled port are measured 0.1dB and $89.9^{\circ}$, respectively. These performances are almost same compared with the conventional BLPD. Suggested application of the CCL can be used various devices and circuits for the size-reduction.