• Title/Summary/Keyword: Coupled FE-BEM

Search Result 20, Processing Time 0.03 seconds

Comparison of piezoelectric flextentional sonar transducer simulations between a coupled FE-BEM and ATILA code (결합형 유한요소-경계요소 기법과 ATILA와의 압전체 유연성 쏘나 변환기 시뮬레이션 비교)

  • Soon-Suck Jarng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.3
    • /
    • pp.559-567
    • /
    • 1999
  • A piezoelectric flextentional sonar transducer has been simulated using a coupled FE-BEM. The dynamics of the sonar transducer is modelled in three dimensions and is analyzed with external electrical excitation conditions. Different results are available such as steady-state displacement modes, underwater directivity patterns, resonant frequencies, bandwidths, quality factors, output acoustic powers and transmitting voltage responses. It is shown that the present barrel-stave sonar transducer of the piezoelectric material produces flextentional displacements which could be related with higher output power, lower quality factor and more omnidirectional beam pattern than other types of sonar transducers. The results of the present sonar transducer modelling are also compared with those of a commercial package such as ATILA.

  • PDF

Combining CFD/FEM/BEM/SEA to Predict Interior Vehicle Wind Noise - Validation Case CAA German Working Group (자동차 유동기인 실내소음 예측을 위한 CFD/FEM/BEM/SEA 의 조합 및 검증 - CAA German Working Group)

  • Blanchet, D.;Golota, A.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.800-811
    • /
    • 2014
  • Recent developments in the prediction of the contribution of windnoise to the interior SPL have opened a realm of new possibilities in terms of i) how the convective and acoustic sources terms can be identified, ii) how the interaction between the source terms and the side glass can be described and finally iii) how the transfer path from the sources to the interior of the vehicle can be modelled. This work discusses in details these three aspects of wind noise simulation and recommends appropriate methods to deliver required results at the right time based on i) simulation and experimental data availability, ii) design stage at which a decision must be made and iii) time available to deliver these results. Several simulation methods are used to represent the physical phenomena involved such as CFD, FEM, BEM, FE/SEA Coupled and SEA. Furthermore, a 1D and 2D wavenumber transformation is used to extract key parameters such as the convective and the acoustic component of the turbulent flow from CFD and/or experimental data whenever available. This work focuses on the validation of the wind noise source characterization method and the vibro-acoustic models on which the wind noise sources are applied.

  • PDF

Combining CFD/FEM/BEM/SEA to Predict Interior Vehicle Wind Noise - Validation Case Hyundai BMT4 (자동차 유동기인 실내소음 예측을 위한 CFD/FEM/BEM/SEA 의 조합 및 검증 - 현대자동차 BMT4)

  • Blanchet, D.;Golota, A.;Almenar, R.;Lim, J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.563-564
    • /
    • 2014
  • Recent developments in the prediction of the contribution of windnoise to the interior SPL have opened a realm of new possibilities in terms of i) how the convective and acoustic sources terms can be identified, ii) how the interaction between the source terms and the side glass can be described and finally iii) how the transfer path from the sources to the interior of the vehicle can be modelled. This work discusses several simulation methods that can be used to represent the physical phenomena involved such as CFD, FEM, BEM, FE/SEA Coupled and SEA. This work focuses on the validation of the wind noise source characterization method and the vibro-acoustic models on which the wind noise sources are applied in the framework of a benchmark proposed by Hyundai Motors Corporation.

  • PDF

Hydrodynamic analysis of floating structures with baffled ARTs

  • Kim, San;Lee, Kang-Heon
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • In ocean industry, free surface type ART (Anti Roll tank) system has been widely used to suppress the roll motion of floating structures. In those, various obstacles have been devised to obtain the sufficient damping and to enhance the controllability of freely rushing water inside the tank. Most of previous researches have paid on the development of simple mathematical formula for coupled ship-ARTs analysis although other numerical and experimental approaches exist. Little attention has been focused on the use of 3D panel method for preliminary design of free surface type ART despite its advantages in computational time and general capacity for hydrodynamic damping estimation. This study aims at developing a potential theory based hydrodynamic code for the analysis of floating structure with baffled ARTs. The sloshing in baffled tanks is modeled through the linear potential theory with FE discretization and it coupled with hydrodynamic equations of floating structures discretized by BEM and FEM, resulting in direct coupled FE-BE formulation. The general capacity of proposed formulation is emphasized through the coupled hydrodynamic analysis of floating structure and sloshing inside baffled ARTs. In addition, the numerical methods for natural sloshing frequency tuning and estimation of hydrodynamic damping ratio of liquid sloshing in baffled tanks undergoing wave exiting loads are developed through the proposed formulation. In numerical examples, effects of natural frequency tuning and baffle ratios on the maximum and significant roll motions are investigated.

Analysis of Acoustic Radiation Efficiency and Underwater Radiated Noise of Double Bottom-shaped Structure (이중저 형상 구조물의 음향방사효율과 수중방사소음 해석)

  • Choi, Sung-Won;Kim, Kook-Hyun;Cho, Dae-Seung;Suh, Kyu-Youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.2
    • /
    • pp.158-163
    • /
    • 2012
  • Recently, reducing underwater radiated noise (URN) of ships has become an environmental issue to protect marine wildlife. URN of ships can be predicted by various methods considering its generating mechanism and frequency ranges. For URN prediction due to ship structural vibration in low frequency range, the fluid-structure interaction analysis technique based on finite element and boundary element methods (FE/BEM) is regarded as an useful technique. In this paper, URN due to a double bottom-shaped structure vibration has been numerically investigated based on a coupled method of FE/BEM to enhance the prediction accuracy of URN due to the vibration of real ship engine room structure. Acoustic radiation efficiency and URN transfer function in case of vertical harmonic excitation on the top plate of double bottom structure have been evaluated. Using the results, the validity of an existing empirical formula for acoustic radiation efficiency estimation and a simple URN transfer function, which are usually adopted for URN assessment in initial design stage, is discussed.

Effect of Pressure Variations on Augmentation of Heat Transfer by Ultrasonic Vibrations (초음파 가진시 압력변동이 열전달 향상에 미치는 영향)

  • Yang, Ho-Dong;Oh, Yool-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1069-1074
    • /
    • 2004
  • This study investigated the effect of pressure variations on augmentation of heat transfer when the ultrasonic waves were applied. The augmentation ratio of heat transfer was experimentally investigated and was compared with the profiles of pressure distributions calculated applying a coupled finite element-boundary element method (coupled FE-BEM). As the ultrasonic intensities increase from 70W to 340W, the velocity of the liquid paraffin is found to increase as well as kinetic energy, This physical behavior known as quasi-Eckart streaming results from acoustic pressure variations in the liquid. Especially, the higher acoustic pressure distribution near two ultrasonic transducers develops more intensive flow (quasi-Eckart streaming), destroying the flow instability. Also, the profile of acoustic pressure variation is consistent with that of augmentation of heat transfer. This mechanism is believed to increase the ratio of hear transfer coefficient.

  • PDF

Structural design of a piezoelectric flextentional deep-water sonar transducer using a coupled FE-BEM (결합형 유한요소-경계요소 기법을 사용한 심해저용 압전형 유연성 쏘나 트랜스듀서의 구조 설계)

  • Jarng, Soon-Suck;Chung, Woon-Kwan
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.377-387
    • /
    • 1999
  • A piezoelectric flextentional deep-water sonar transducer has been designed using a coupled FE-HEM. The dynamics of the sonar transducer is modelled in three dimensions and is analyzed with external electrical excitation conditions. Different results are available such as steady-state frequency response for TX displacement modes, directivity patterns, resonance frequencies, TVRs. While the conventional barrel-stave typed sonar transducer of the piezoelectric material is designed, the external surface of the transducer is modified in order to allow the same hydrostatic pressure to be applied onto the inner and the outer surfaces of the transducer. With this modification for deep-water application, a new resonance mode is generated at lower frequency. This lower resonance mode can be adjusted according to the degree of the outer surface modification.

  • PDF

A Study on the Enhancement of Phase Change Heat Transfer in Acoustic Fields (음향장 내의 상변화 열전달 촉진에 관한 연구)

  • 양호동;나기대;오율권
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.152-160
    • /
    • 2004
  • The present study investigates on the experimental and numerical results of heat transfer in the acoustic fields induced by ultrasonic waves. The strong upwards flow which moves from the bottom surface in a cavity to the free surface called as "acoustic streaming" was visualized by a particle image velocimetry (PIV). In addition, the augmentation ratio of heat transfer was experimentally investigated in the presence of acoustic streaming and was compared with the profiles of acoustic pressure calculated by the numerical analysis. A coupled finite element-boundary element method (FE-BEM) was applied for a numerical analysis. The results of experimental and numerical studies clearly show that acoustic pressure variations caused by ultrasonic waves in a medium are closely related to the augmentation of heat transfer.

The Effect of Acoustic Fields Formed in Heat Transfer Process (음향장이 열전달 과정에 미치는 영향)

  • Yang, Ho-Dong;Oh, Yool-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1603-1608
    • /
    • 2003
  • The Present Study reported on the experimental and numerical results of heat transfer in the acoustic fields induced by ultrasonic waves. The strong upwards flow called as acoustic streaming was visualized by a particle image velocimetry (P.I.V). in addition, the augmentation of heat transfer was experimentally investigated in the presence of acoustic streaming and was compared with the profiles of acoustic pressure calculated by the numerical analysis. Experimental and numerical studies clearly show that acoustic pressure variations are closely related to the augmentation of heat transfer.

  • PDF

The Relation of Enhancement Heat Transfer to Acoustic Pressure by Acoustic Streaming (음향흐름에 의한 음압과 열전달 촉진과의 관계)

  • Yang, Ho-Dong;Oh, Yool-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.591-596
    • /
    • 2005
  • The objectives in the present study are to investigate that the enhancement heat transfer was experimentally measured and was compared with the acoustic pressure obtained by numerical analysis. From the results of the present study, a strong Fluid motion initiated by ultrasonic vibrations can affect heat and mass transfer. This phenomenon. called acoustic streaming, clearly observed by PIV measurement leads to increase in velocity of a Fluid which is a crucial physical concept to explain the enhancement heat transfer. The heat transfer coefficient is increased with increase in the ultrasonic intensities. The largest enhancement heat transfer (about 26%) is measured at the ultrasonic intensity of 300W. Acoustic streaming results from sudden acoustic pressure variations in the liquid. The results of numerical analysis reveal that acoustic pressure is increased by 59.5% at the ultrasonic intensity of 300W. The higher acoustic pressure near four ultrasonic transducers develops more intensive flow destroying the flow instability. Also, the profiles of acoustic pressure variation are consistent with those of enhancement heat transfer.

  • PDF