• 제목/요약/키워드: Coupled Acoustic Modes

검색결과 30건 처리시간 0.02초

Open-Loop Responses of Droplet Vaporization to Linear Normal Acoustic Modes

  • Kim, S.Y.;W.S. Yoon
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.155-164
    • /
    • 2004
  • In order for studying pressure-coupled dynamic responses of droplet vaporization, open-loop experiment of an isolated droplet vaporization exposed to pressure perturbations in stagnant gaseous environment is numerically conducted, Governing equations are solved for flow parameters at gas and liquid phases separately and thermodynamic parameters at the interfacial boundary are matched for problem closure. For high-pressure effects, vapor-liquid interfacial thermodynamics is rigorously treated. A series of parametric calculations in terms of mean pressure level and wave frequencies are carried out employing a n-pentane droplet in stagnant gaseous nitrogen. Results show that wave instability in view of pressure-coupled vaporization response seems more susceptible at higher pressures and higher wave frequencies. Mass evaporation rate responding to pressure waves is amplified with increase in pressure due to substantial reduction in latent heat of vaporization. Augmentation of perturbation frequency also enhances amplification due to the reduction of phase differences between pressure perturbation and surface temperature fluctuation.

  • PDF

로켓엔진 연소기에서 공명기의 음향 동조에 미치는 유동 및 노즐 감쇠 효과에 관한 연구 (Effects of Mean Flow and Nozzle Damping on Acoustic Tuning of a Resonator in a Rocket Combustor)

  • 손채훈;박이선;김성구
    • 한국추진공학회지
    • /
    • 제10권3호
    • /
    • pp.41-47
    • /
    • 2006
  • 로켓 연소기에서 음향 공명기의 음향 동조에 미치는 평균 유동 및 노즐 감쇠 효과를 수치해석적으로 연구하였다. 본 연구에서는 분사기가 연소실내 음향 감쇠를 위한 공명기로서 사용된다. 연소실내 평균 유동의 마하수가 증가함에 따라 제 1 접선 방향 모드의 공진 주파수가 미약하게 감소하였으나 최적의 분사기 동조 길이는 거의 변화가 없었다. 노즐 감쇠는 공진 주파수나 최적 동조 길이에 영향을 미치지 못하며, 다만 음향 진동 진폭을 변화시킬 뿐이었다. 이러한 결과로부터, 평균 유동과 노즐 감쇠가 음향 공 동조에 미치는 영향은 미미함을 알 수 있었다. 분사기의 장착 개수가 증가할수록 음향 진동 진폭이 감소하였으나, 분사기와 연계된 새로운 음향 모드가 발생함을 알 수 있었다.

Influence of Resin-Infiltrated Time on Wood Natural Materials Using Conventional/Air-Coupled Ultrasound Waves

  • Park, Je-Woong;Kim, Do-Jung;Kweon, Young-Sub;Im, Kwang-Hee;Hsu, David K.;Kim, Sun-Kyu;Yang, In-Young
    • 비파괴검사학회지
    • /
    • 제29권3호
    • /
    • pp.235-241
    • /
    • 2009
  • Composite wood materials are very sensitive to water and inspection without any coupling medium of a liquid is really needed to wood materials due to the permeation of coupling medium such as water. However, air-coupled ultrasound has obvious advantages over water-coupled experimentation compared with conventional C-scanner. In this work, it is desirable to perform contact-less nondestructive evaluation to assess wood material homogeneity. A wood material was nondestructively characterized with non-contact and contact modes to measure ultrasonic velocity using automated data acquisition software. We have utilized a proposed peak-delay measurement method. Also through transmission mode was performed because of the main limitation for air-coupled transducers, which is the acoustic impedance mismatch between most materials and air. The variation of ultrasonic velocity was found to be somewhat difference due to air-coupled limitations over conventional scan images. However, conventional C-scan images are well agreed with increasing the resin-infiltrated time as expected. Finally, we have developed a measurement system of an ultrasonic velocity based on data acquisition software for obtaining ultrasonic quantitative data for correlation with C-scan images.

결합형 유한요소-경계요소 기법에 의한 FFR 형태의 고출력 심해저용 쏘나 변환기 설계 (Design of a FFR-typed High Power Deep-water Sonar Transducer using a Coupled FE-BEM)

  • 장순석;이제형;안흥구;최현호
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1999년도 학술발표대회 논문집 제18권 1호
    • /
    • pp.224-227
    • /
    • 1999
  • A high power deep-water sonar transducer of FFR (Free Flooded Ring) type has been designed using a coupled FE-BEM. The present sonar transducer is composed of rectangular piezoelectric ceramics and pie-shaped steels (or the advantage of simple fabrication. The dynamics of the sonar transducer is modelled in three dimensions and is analyzed with external electrical excitation conditions. Different results are available such as steady-state frequency response for TX and RX displacement modes, directivity patterns, back-scattering patterns, bandwidths, transmitting voltage responses and receiving sensitivity responses. The TV response shows a very high acoustic pressure of 150 dB/lV (ref $1{\mu}Pa$ at 1m) at 1900 Hz. This ultra high power response of the sonar transducer indicates a new possibility of the sonar transducer development.

  • PDF

결합형 유한요소-경계요소 기법을 사용한 심해저용 압전형 유연성 쏘나 변환기의 시뮬레이션 (Simulation of a piezoelectric flextentional deep-water sonar transducer using a coupled FE-BEM)

  • 장순석;이제형;안흥구;최현호
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1999년도 학술발표대회 논문집 제18권 1호
    • /
    • pp.218-223
    • /
    • 1999
  • A piezoelectric flextentional deep-water sonar transducer has been simulated using a coupled FE-BEM. The dynamics of the sonar transducer is modelled in three dimensions and is analyzed with extern리 electrical excitation conditions as well as external acoustic pressure loading conditions. Different results are available such as steady-state frequency response for RX and TX, displacement modes, directivity patterns, back-scattering patterns, resonant frequencies, bandwidths, quality factors, transmitting voltage (TV) responses, input receiving sensitivity (RS) responses. White the present barrel-stave typed sonar transducer of the piezoelectric material is being simulated, the external surface of the transducer is modified in order to allow the same water pressure to be applied to the inner and the outer surfaces of the transducer. With this modification for deep-water application, the resonance frequency of the modified flextentional sonar transducer becomes much lower than that of the unmodified flextentional sonar transducer. The results of the present sonar transducer modelling are also compared with those of a commercial package such as ATILA.

  • PDF

결합형 유한요소-경계요소 기법과 ATILA와의 압전체 유연성 쏘나 변환기 시뮬레이션 비교 (Comparison of piezoelectric flextentional sonar transducer simulations between a coupled FE-BEM and ATILA code)

  • Soon-Suck Jarng
    • 한국정보통신학회논문지
    • /
    • 제3권3호
    • /
    • pp.559-567
    • /
    • 1999
  • 결합형 유한요소-경계요소 기법을 사용하여 압전체 유연형 쏘나 변환기를 시뮬레이션하였다. 쏘나 변환기의 역학적 구동을 3차원적으로 모델링하였고 전기적 외부 부하 조건을 가지고 분석하였다. 정상 상태 변위 모드, 방향 패턴, 공진 주파수, 대역,0-factor, 출력 압력, TV 응답과 같은 결과들을 보여준다. 본 논문의 술통 형태의 압전 재질 쏘나 변환기는 유연한 변위를 발생시키며, 다른 형태의 쏘나 변환기와 달리 고출력, 낮은 Q-factor, 향상된 전방위성을 가지도록 해준다. 본 연구에서 개발된 쏘나 변환기 모델링의 결과를 ATILA와 같은 상업적 소프트웨어와 비교하였다.

  • PDF

임피던스 튜브 내에 설치된 평판의 음파투과해석 (An Analysis of the Sound Transmission through a Plate Installed inside an Impedance Tube)

  • 김현실;김봉기;김상렬;이성현
    • 한국음향학회지
    • /
    • 제34권3호
    • /
    • pp.219-226
    • /
    • 2015
  • 본 논문은 단면이 정사각형인 임피던스 튜브 내에 고정된 평판의 STL(Sound Transmission Loss)을 해석적으로 구하는 방법을 다루었다. 평판의 진동과 튜브 내의 음장의 연성거동(coupled motion)을 고려하였는데 평판의 진동과 튜브 음장을 무한 급수의 합으로 전개하였으며 평면파 가정을 이용하여 처음 몇 개의 모드만 고려하여도 충분히 정확한 결과를 얻음을 보였다. 평판은 클램프(clamp) 지지로 가정하였는데 진동 모드는 단면의 가로 및 세로방향 보(beam) 진동 모드의 곱으로 전개하였고 고유진동수는 Rayleigh-Ritz 방법을 이용하여 구하였다. 평판의 STL은 가장 낮은 고유진동수에서 골(dip)을 가지며 주파수가 이보다 작아지면 STL은 커짐을 보였다. 기존 논문의 측정 및 FEM(Finite Element Method) 해석결과와 비교한 결과 잘 일치함을 확인하였다.

다중동조질량감쇠기를 이용한 단순지지 슬래브의 진동 및 소음저감에 관한 연구 (Vibration and Noise Control of the Simply Supported Slab Using the Multi-tuned Mass Damper)

  • 황재승;홍건호;박홍근
    • 한국소음진동공학회논문집
    • /
    • 제18권10호
    • /
    • pp.1006-1013
    • /
    • 2008
  • In this study, it is outlined that heavy weight floor impact noise induced by the vibration of slab can be reduced using multi tuned mass damper(MTMD) effectively. Substructure synthesis is utilized to develope analytical model of the slab coupled with MTMD and acoustic power is introduced to evaluate the performance of noise control for simplicity. Numerical analysis is carried out to investigate the effect of the properties of MTMD on the vibration and noise control of the simply supported slab. Numerical analysis shows that mass ratio of MTMD is critical on the vibration and noise control of the slab and it is also essential to reduce the vibration in higher modes of slab in the light of its great effect on the radiation of sound.

Investigation of Self-Excited Combustion Instabilities in Two Different Combustion Systems

  • Seo, Seonghyeon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권7호
    • /
    • pp.1246-1257
    • /
    • 2004
  • The objective of this paper is to characterize dynamic pressure traces measured at self-excited combustion instabilities occurring in two combustion systems of different hardware. One system is a model lean premixed gas turbine combustor and the other a fullscale bipropellant liquid rocket thrust chamber. It is commonly observed in both systems that low frequency waves at around 300㎐ are first excited at the onset of combustion instabilities and after a short duration, the instability mode becomes coupled to the resonant acoustic modes of the combustion chamber, the first longitudinal mode for the lean premixed combustor and the first tangential mode for the rocket thrust chamber. Low frequency waves seem to get excited at first since flame shows the higher heat release response on the lower frequency perturbations with the smaller phase differences between heat release and pressure fluctuations. Nonlinear time series analysis of pressure traces reveals that even stable combustion might have chaotic behavior with the positive maximum Lyapunov exponent. Also, pressure fluctuations under combustion instabilities reach a limit cycle or quasi-periodic oscillations at the very similar run conditions, which manifest that a self-excited high frequency instability has strong nonlinear characteristics.

A vibration based acoustic wave propagation technique for assessment of crack and corrosion induced damage in concrete structures

  • Kundu, Rahul Dev;Sasmal, Saptarshi
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.599-610
    • /
    • 2021
  • Early detection of small concrete crack or reinforcement corrosion is necessary for Structural Health Monitoring (SHM). Global vibration based methods are advantageous over local methods because of simple equipment installation and cost efficiency. Among vibration based techniques, FRF based methods are preferred over modal based methods. In this study, a new coupled method using frequency response function (FRF) and proper orthogonal modes (POM) is proposed by using the dynamic characteristic of a damaged beam. For the numerical simulation, wave finite element (WFE), coupled with traditional finite element (FE) method is used for effectively incorporating the damage related information and faster computation. As reported in literature, hybrid combination of wave function based wave finite element method and shape function based finite element method can addresses the mid frequency modelling difficulty as it utilises the advantages of both the methods. It also reduces the dynamic matrix dimension. The algorithms are implemented on a three-dimensional reinforced concrete beam. Damage is modelled and studied for two scenarios, i.e., crack in concrete and rebar corrosion. Single and multiple damage locations with different damage length are also considered. The proposed methodology is found to be very sensitive to both single- and multiple- damage while being computationally efficient at the same time. It is observed that the detection of damage due to corrosion is more challenging than that of concrete crack. The similarity index obtained from the damage parameters shows that it can be a very effective indicator for appropriately indicating initiation of damage in concrete structure in the form of spread corrosion or invisible crack.