• 제목/요약/키워드: Counterflow flame

검색결과 163건 처리시간 0.021초

Investigation of Velocity Boundary Conditions in Counterflow Flames

  • Park, Woe-Chul;Anthony Hamins
    • Journal of Mechanical Science and Technology
    • /
    • 제16권2호
    • /
    • pp.262-269
    • /
    • 2002
  • The effects of velocity boundary conditions on the structure of methane-air nonpremixed counterflow flames were investigated by two-dimensional numerical simulation. Two low global strain rates, 12 s$\^$-1/ and 20 s$\^$-1/, were considered for comparison with measurements. Buoyancy was conformed to have strong effects on the flame structure at a low global strain rate. It was shown that the location where a top hat velocity profile was imposed is sensitive to the flame structure, and that the computed temperature along the centerline agrees well with the measurements when plug flow was imposed at the inner surface of the screen nearest the duct exit.

질소로 희석된 대향류 메탄 비예혼합화염에서 CO2에 의한 소화특성 (CO2 Suppression Characteristics of the Nitrogen-diluted Methane Counterflow Non-premixed Flame)

  • 이호현;오창보;황철홍
    • 한국안전학회지
    • /
    • 제28권2호
    • /
    • pp.42-48
    • /
    • 2013
  • The $CO_2$ suppression characteristics and flame structure of nitrogen-diluted methane counterflow non-premixed flame were studied experimentally and numerically. To mimic a situation where combustion product gases are entrained into a compartment fire, fuel stream was diluted with $N_2$. A gas-phase suppression agent, $CO_2$, was diluted in the air-stream to investigate the suppression characteristics by the agent. For numerical simulation, an one-dimensional OPPDIF code was used for comparison with experimental results. An optically-thin radiation model(OTM) was adopted to consider radiation effects on the suppression characteristics. It was confirmed experimentally and numerically that suppression limit decreased with increasing nitrogen mole fraction in the fuel stream. A turning point was found only when a radiation heat loss was considered and the extinguishing concentration for turning point was differently predicted compared to the experiment result. Critical extinguishing concentration when neglecting radiation heat loss was also differently predicted compared with the experimental result.

C-곡선상의 화염 소화 특성에 있어서 대향류 버너직경 효과 (Effects of Counterflow Burner Diameter on the Characteristics of Flame Extinction in C-curve)

  • 박대근;박정;윤진한;길상인
    • 대한기계학회논문집B
    • /
    • 제33권7호
    • /
    • pp.535-540
    • /
    • 2009
  • Experiments are conducted to elucidate effects of counterflow burner diameter on flame extinction behaviors in C-curve. Present experimental results with burner diameters of 18, 26, and 50 mm in normal-gravity are compared with the numerical result of Oppdif code as well as the previous experimental results in micro-gravity. The turning point migrates to a higher global strain rate as burner diameter decreases. It is shown that the C-curve with the burner diameter of 50mm is best-fitted to the numerical result of Oppdif code and the previous micro-gravity results also excurse to the numerical result. This suggests that the precise C-curve can be obtained only with an appreciably large burner. The main reason why these differences appear is shown to be attributed to the transition of shrinking flame disk to flame hole due to strong effects of radial conduction heat loss, which is the typical extinction characteristics of low strain rate flames with a finite burner diameter in a counterflow diffusion flame.

비예혼합 대향류화염의 구조와 소화 (Structure and Suppression of Nonpremixed Counterflow Flames)

  • Anthony Hamins;Park, Woe-Chul
    • 한국화재소방학회논문지
    • /
    • 제17권3호
    • /
    • pp.20-25
    • /
    • 2003
  • 화염변형률과 소화약제의 첨가 및 부력이 비예혼합 대향류 화염의 구조와 소화에 미치는 영향을 조사하기 위해 필라멘트와 열전대를 이용한 실험과 Oppdif 및 FDS를 사용한 수치해석을 수행하였다. 소화농도에 가까운 메탄-공기의 확산화염에 대하여 2.2초의 무중력 낙하실험과 정상중력에서의 측정결과를 수치모사의 결과와 비교하였다. 변형률 7 s$^{-1}$에서 100 s$^{-1}$까지 무중력상태에서 측정한 임계소화농도로부터 질소의 임계소화농도에 최대치가 있음을 확인하였다. 또한, 부력의 효과, 즉, 화염의 곡률과 두께 변화를 FDS의 계산결과로 확인하였다. 무중력상태에서 화염의 최고온도와 그 위치에 대한 실험치와 계산값이 일치함을 알 수 있었다.

부력을 최소화한 대향류 확산화염 소화거동에서 연료농도구배의 영향 (Influence of Fuel concentration gradient on the Extinction Behavior in Buoyancy minimized Counterflow Diffusion Flame)

  • 박진욱;박정;윤진한;길상인
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.379-381
    • /
    • 2014
  • Influence of fuel concentration gradient was investigated near flame extinction limit in buoyancy-suppressed non-premixed counterflow flame with triple co-flow burner. The use of He curtain flow produced a microgravity level of $10^{-2}-10^{-3}g$ in He-diluted non-premixed counter triple co-flow flame experiments. Flame stability map was presented based on flame extinction and oscillation near extinction limit. The stability map via critical diluent mole fraction with global strain rate was represented by varying outer and inner He-diluted mole fractions. The flame extinction modes could be classified into five: an extinction through the shrinkage of the outmost edge flame forward the flame center with and without self-excitation, respectively ((I) and (II)), an extinction via the rapid expansion of a flame hole while the outmost edge flame is stationary (III), both the outermost and the center edge flames oscillate, and then a donut shaped flame is formed or the flame is entirely extinguished (IV), a shrinkage of the outermost edge flame without self-excitation followed by shrinking or sustain the inner flame (V).

  • PDF

저신장율 대향류확산화염에서 진동불안정성을 갖는 에지화염의 동적거동 (Dynamic Behaviors of Oscillating Edge-Flame in Low Strain Rate Counterflow Diffusion Flames)

  • 박준성;김현표;박정;김정수;길상인
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.65-72
    • /
    • 2006
  • Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Critical mole fraction at flame extinction is examined with velocity ratio and global strain rate. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate and added nitrogen mole fraction to fuel stream (fuel Lewis number). It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations in low strain rate flames are experimentally described well and are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames. Important contribution of lateral heat loss even to edge flame oscillation is clarified.

  • PDF

Development of a Three-Dimensional DNS Code for Study of Clean Agents -Two-Dimensional Simulation of Diluted Nonpremixed Counterflow Flames-

  • Park, Woe Chul;Hamins, A.
    • International Journal of Safety
    • /
    • 제1권1호
    • /
    • pp.18-23
    • /
    • 2002
  • A mixture fraction formulation is used to numerically simulate the structure of diluted axisymmetric methane-air nonpremixed counterflow flames. The effects of global strain rate and gravity wert! investigated and results were compared. Fuel of a mixture of 20% methane and 80% nitrogen by volume and oxidizer of pure air at low and moderate global strain rates $a_g= 20, 40, 80 s^{-1}$ in normal and zero gravity were computed. It is shown that the numerical method is capable of predicting the structure of counterflow flames in normal and microgravity environments at low and moderate global strain rates.

상호작용하는 메탄-수소 예혼합 대향류화염에 관한 연구 (A Study on Interacting $CH_4$-Air and $H_2/N_2$-Air Premixed Counterflow Flames)

  • 문창우;박정;권오붕;배대석;김정수
    • 한국연소학회지
    • /
    • 제15권1호
    • /
    • pp.38-42
    • /
    • 2010
  • Using a counterflow burner, downstream interactions between $CH_4$-air and $H_2/N_2$-Air premixed flames with various equivalence ratios has been experimentally investigated. Flame stability maps on triple and twin flames are provided in terms of global strain rate and equivalence ratio. Lean and rich flammable limits are examined for methane/air and hydrogen/nitrogen/air mixtures over the entire range of mixture concentrations in the interacting flames. Results show that these flammable limits can be significantly modified in the presence of interaction such that mixture conditions beyond the flammability limit can be still burn if it is supported by stronger flame. The experiment also discusses various oscillatory instabilities in a stability map.

대향류 메탄/공기 예혼합화염의 소염특성에 관한 수치해석적 연구 (A Numerical Study on the Extinction of Methane/Air Counterflow Premixed Flames)

  • 정대헌;정석호
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.1982-1988
    • /
    • 1995
  • Methane/Air premixed flames are studied numerically, using a detailed chemical model, to investigate the flame strech effects on the extinction in a counterflow. The finite difference method, time integration and modified Newton iteration are used, and adaptive grid technique and grid smoothing have been employed to adjust the grid system according to the spatial steepness of the solution profiles. Results show that the flame stretch, or the conventional nondimensionalized stretch having the tangential flow characteristics of the stretched flame alone cannot adequately describes the extinction phenomena. On the other hand, the local flame stretch having both the normal and tangential flow characteristics of the stretched flame can give a proper explanation to the extinction of the symmetric planar premixed flames stabilized in a counter flow. The extinction condition were found to be a constant local stretch regardless of the equivalence ratio.

비예혼합 대향류 화염의 축대칭 모사 - 연료농도가 화염구조에 미치는 영향 - (Axisymmetric Simulation of Nonpremixed Counterflow Flames - Effects of Fuel Concentration on Flame Structure -)

  • 박외철
    • 한국가스학회지
    • /
    • 제7권3호
    • /
    • pp.44-50
    • /
    • 2003
  • 연료농도에 따른 대향류 화염구조의 변화를 조사하고 수치법을 검증하기 위해, 축대칭 메탄-공기 대향류화염을 모사하였다. 변형률 $a_g=20,\;60,\;90\;s^{-1}$과 연료 중 메탄의 몰분율 $x_m=20,\;50,\;80\%$를 수치매개변수로 하여, 변형율과 연료농도에 따라 온도분포, 닥트 중심축의 온도분포와 축방향 속도의 분포를 계산하였다. 축대칭 모사는 혼합분율 연소모델을 채용한 FDS로 수행하였고, 계산결과를 구체적 화학반응을 포함한 1차원 화염코드 OPPDIF의 계산결과와 비교하였다. 본 연구에서 조사한 모든 변형율과 연료농도에서 축대칭 모사의 온도 및 축방향 속도 분포가 1차원 계산결과와 잘 일치하는 것으로 나타났다. 연료농도가 증가하면 화염의 두께와 최고온도가 증가하고 반경이 감소함을 알 수 있었다.

  • PDF