• Title/Summary/Keyword: Counterflow configuration

Search Result 15, Processing Time 0.03 seconds

On the Characteristics of Extinction and Re-ignition in a Crossed Twin Jet Counterflow (Crossed Twin Jet Counterflow에서의 소염과 재점화 특성)

  • Lee, B.K.;Yang, S.Y.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.25-31
    • /
    • 2002
  • For the better understanding of the stability of turbulent combustion, more researches on extinction and re-ignition are needed. Flame interactions in non-premixed flame have also not been greatly researched. We made a hybrid twin jet flame, the combinations of diffusion flame and partially-premixed diffusion flame, in a twin jet counterflow configuration. The extinction limits of a crossed twin jet counterflow have been extended in comparison with those of a one-dimensional counterflow because of flame interactions through heat transfer and joint ownership of various radicals. Besides, we have obtain ignition $Damk\"{o}hler$ number by experimental method without external ignition source using the extinction characteristic in a crossed twin jet counterflow flame. From results, we can identify the hysteresis between extinction and ignition $Damk\"{o}hler$ number in S-curve.

  • PDF

Self-excitation of Edge Flame (에지화염의 자기 진동)

  • Park, Jeong;Youn, Sung Hwan;Chung, Yong Ho;Lee, Won June;Kwon, Oh Boong
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.167-170
    • /
    • 2012
  • Self-excitations of edge flame were studied in laminar lifted free- and coflow-jet as well as counterflow flames diluted with nitrogen and helium. The self-excitations, originated from variation of edge flame speed and found in the above-mentioned configurations, are discussed. A newly found self-excitation and flame blowout, caused by the conductive heat loss from premixed wings to trailing diffusion flame are described and characterized in laminar lifted jet flames. Some trials to distinguish Lewis-number-induced self-excitation from buoyancy-driven one with O(1.0 Hz) are introduced, and then the differences are discussed. In counterflow configuration, important role of the outermost edge flame in flame extinction is also suggested and discussed.

  • PDF

A Numerical Study on Chemical Effects of Co2 Addition to Oxidizer and Fuel Streams in H2-O2 Counterflow Diffusion Flames (수소-산소 대향류 확산 화염에서 산화제와 연료측에 첨가된 Co2의 화학적 효과에 관한 수치해석 연구)

  • Lee, Kee-Man;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.371-381
    • /
    • 2004
  • Numerical simulation of $CO_2$ addition effects to fuel and oxidizer streams on flame structure has been conducted with detailed chemistry in H$_2$-O$_2$ diffusion flames of a counterflow configuration. An artificial species, which displaces added $CO_2$ in the fuel- and oxidizer-sides and has the same thermochemical, transport, and radiation properties to that of added $CO_2$, is introduced to extract pure chemical effects in flame structure. Chemical effects due to thermal dissociation of added $CO_2$ causes the reduction flame temperature in addition to some thermal effects. The reason why flame temperature due to chemical effects is larger in cases of $CO_2$ addition to oxidizer stream is well explained though a defined characteristic strain rate. The produced CO is responsible for the reaction, $CO_2$+H=CO+OH and takes its origin from chemical effects due to thermal dissociation. It is also found that the behavior of produced CO mole fraction is closely related to added $CO_2$ mole fraction, maximum H mole fraction and its position, and maximum flame temperature and its position.

A Study on Flame Extinction Behavior in Downstream Interaction between SNG/Air Premixed Flames (SNG/Air 예혼합 화염들의 하류상호작용에 있어서 화염 소화 거동에 관한 연구)

  • Sim, Keunseon;Lee, Keeman
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.4
    • /
    • pp.48-60
    • /
    • 2016
  • Experimental and numerical studies were conducted to investigate flame behaviors near flammable limits for downstream-interacting SNG-air premixed flames in a counter-flow configuration. The SNG fuel consisted of a methane, a propane, and a hydrogen with volumetric ratios of 91, 6, and 3%, respectively. The most appropriate priority for some reliable reaction mechanisms examined was given to the mechanism of UC San diego via comparison of lean extinction limits attained numerically with experimental ones. Flame stability map was presented with a functional dependencies of lower and upper methane concentrations in terms of global strain rate. The results show that, at the global strain rate of $30s^{-1}$, lean extinction boundary is slanted while rich extinction one is relatively less inclined because of the dependency of such extinction boundary shapes on deficient reactant Lewis number governed by methane mainly. Further increase of global strain rate forces both extinction boundaries to be more slanted and to be shrunk, resulting in an island of extinction boundary and subsequently one flame extinction limit. Extinction mechanisms for lean and rich, symmetric and asymmetric extinction boundary were identified and discussed via heat losses and chemical interaction.

Study on the Counterflow Regenerative Evaporative Cooler with Finned Channels (대향류 핀삽입형 재생증발식 냉방기 연구)

  • Choi, Bong-Su;Hong, Hi-Ki;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.447-454
    • /
    • 2008
  • The regenerative evaporative cooler(REC) is to cool a stream of air using evaporative cooling effect without an increase in the humidity ratio. In the regenerative evaporative cooler, the air can be cooled down to a temperature lower than its inlet wet-bulb temperature. Besides the cooling performance, for practical application of the regenerative evaporative cooler, the compactness of the system is also a very important factor to be considered. In this respect, three different configurations, i.e., the flat plate type, the corrugated plate type, and the finned channel type are investigated and compared for the most compact configuration. The optimal structure of each configuration is obtained individually to minimize the volume for a given effectiveness within a limit of the pressure drop. Comparing the three optimal structures, the finned channel type is found to give the most compact structure among the considered configurations. The volume of the regenerative cooler can be reduced to 1/8 by adopting the finned channel type as compared to that of the flat plate type.

Unsteady Analysis for Combustion Characteristics of PRF75 Fuel under HCCI Conditions (균일예혼합 압축착화 조건에서 PRF75 연료의 비정상 연소특성 해석)

  • Oh, Tae Kyun;Lee, Su Ryong
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.21-28
    • /
    • 2013
  • HCCI engines have mainly focused on achieving low temperature combustion in order to obtain higher efficiency and lower emission. One of practical difficulties in HCCI combustion is to control the start of combustion and subsequent combustion phasing. The choice of primary reference fuels in HCCI strategy is one of various promising solutions to make HCCI combustion ignition-controlled. The behavior of ignition delay to the frequency variation of sinusoidal velocity oscillation is computationally investigated under HCCI conditions of PRF75 using a reduced chemistry in a counterflow configuration. The second-stage ignition is more delayed as the higher frequency is imposed on nozzle velocity fluctuation whereas the first-stage ignition is not much influenced.

A Numerical Study on Nonlinear Dynamic Behavior of Diffusive-Thermal Instability in Diluted CH4/O2 Conterflow Diffusion Flames (희석된 메탄/산소 대향류 확산화염에서 확산-열 불안정으로 인한 화염의 비선형 동적 거동에 관한 수치해석)

  • Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.688-696
    • /
    • 2004
  • Nonlinear dynamic behavior of diffusive-thermal instability in diluted CH$_4$/O$_2$ diffusion flames is numerically investigated by adopting detailed chemistry and transport. Counterflow diffusion flame is adopted as a model flamelet. Particular attention is focused on the pulsating-instability regime, which arises for Lewis numbers greater than unity, and the instability occurs at high strain rate near extinction condition in this flame configuration. Once a steady flame structure is obtained for a prescribed value of initial strain rate, transient solution of the flame is calculated after a finite amount of strain-rate perturbation is imposed on the steady flame. Transient evolution of the flame depends on the initial strain rate and the amount of perturbed strain rate. Basically, the dynamic behaviors can be classified into two types, namely non-oscillatory decaying solution and diverging solution leading to extinction. The peculiar oscillatory solution, which has been found in the previous study adopting one-step chemistry and constant Lewis numbers, is net observed in this study, which is attributed to both convective flow and preferential diffusion effects.

Numerical Study on Dynamic Behavior of Diffusive-Thermal Instability in $CH_4/O_2$ Conterflow Diffusion Flames (메탄/산소 대향류 확산화염에서 확산-열 불안정으로 인한 화염의 거동에 관한 수치적 연구)

  • Sohn, Chae-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.95-101
    • /
    • 2004
  • Dynamic behavior of diffusive-thermal instability in diluted $CH_4/O_2$ diffusion flames is numerically investigated by adopting detailed chemistry and transport. Counterflow diffusion flame is adopted as a model flamelet. Particular attention is focused on the pulsating-instability regime, which arises for Lewis numbers greater than unity, and the instability occurs at high strain rate near extinction condition in this flame configuration. Once a steady flame structure is obtained for a prescribed value of initial strain rate. transient solution of the flame is calculated after a finite amount of strain-rate perturbation is imposed Oil the steady flame. Transient evolution of the flame depends on the initial strain rate and the amount of perturbed strain rate. Basically, the dynamic behaviors can be classified into two types, namely non-oscillatory decaying solution and diverging solution leading to extinction. The peculiar oscillatory solution. which has been found in the previous study adopting one-step chemistry and constant Lewis numbers, is not observed in this study, which is attributed to both convective flow and preferential diffusion effects.

  • PDF

Diffusion-flame instability in the premixed-flame regime (예혼합화염 영역에서 확산화염의 불안정성에 관한 연구)

  • Lee, Su-Ryong;Kim, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1218-1229
    • /
    • 1997
  • The diffusional-thermal instability of diffusion flames in the premixed-flame regime is studied in a constant-density two-dimensional counterflow diffusion-flame configuration, to investigate the instability mechanism by which periodic wrinkling, travelling or pulsating of the reaction sheet can occur. Attention is focused on flames with small departures of the Lewis number from unity and with small values of the stoichiometric mixture fraction, so that the premixed-flame regime can be employed for activation-energy asymptotics. Cellular patterns will occur near quasisteady extinction when the Lewis number of the more completely consumed reactant is less than a critical value( ~ =0.7). Parametric studies for the instability onset conditions show that flames with smaller values of the Lewis number and stoichiometric mixture fraction and with larger values of the Zel'dovich number tend to be more unstable. For Lewis number greater than unity, near-extinction flame are found to exhibit either travelling instability or pulsating instability.

Oscillatory Instability of Low Strain Rate Edge Flame (저신장율 에지 화염의 진동 불안정성)

  • Kim Kang-Tae;Park June-Sung;Kim Jeong-Soo;Oh Chang-Bo;Keel Sang-In;Park Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.343-349
    • /
    • 2006
  • Systematic experiments in $CH_4/Air$ counterflow diffusion flames diluted with He have been undertaken to study the oscillatory instability in which lateral flame size was less than burner nozzle diameter and thus lateral heat loss could be remarkable at low global strain rate. The oscillatory instability arises for Lewis numbers greater than unity and occurs near extinction condition. The oscillation is the direct outcome from the advancing and retreating edge flame. The dynamic behaviors of extinction in this configuration can be classified into three modes; growing, harmonic and decaying oscillation mode near extinction. As the global strain rate decreases, the amplitude of the oscillation becomes larger. This is caused by the increase of lateral heat loss which can be confirmed by the reduction of lateral flame size. Oscillatory edge flame instabilities at low global strain rate are shown to be closely associated with not only Lewis number but also heat loss (radiation and lateral heat loss).