• Title/Summary/Keyword: Countercurrent Flow

Search Result 60, Processing Time 0.021 seconds

Performance Analysis of Moving Bed Heat Exchanger of Solid Particles in a Vertical Pipe (고체입자 이동층을 이용한 수직 전열관 열교환기의 성능해석)

  • Park, Sang-Il;Choe, Gyeong-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2916-2923
    • /
    • 1996
  • A numerical analysis of the moving bed heat exchanger of solid particles inside the vertical pipe was performed using finite difference method. Also, the theoretical solutions were obtained for comparison when the wall heat flux or the wall temperature was assumed constant. The comparison showed that their results agreed well each other. The moving bed heat exchanger was classified as countercurrent-flow, parallel-flow, and cross-flow types according to the gas flow direction. For each type, the thermal efficiency of heat exchanger was calculated as a function of non-dimensional parameters such as the characteristic length of heat exchanger, Biot number and the ratio of thermal capacities of gas and solid particles.

A Study on Cleaning Process for Benzene Recovery in Activated Carbon Bed (활성탄을 충전한 흡착탑에서 벤젠 회수를 위한 세정공정의 연구)

  • Kang, Sung-Won;Min, Byong-Hoon;Suh, Sung-Sup
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.108-116
    • /
    • 2002
  • Experimental Study was carried out for benzene desorption by purge gas or evacuation in an activated carbon bed. As purge gas flow rate increased, desorption rate increased due to the higher interstitial linear gas velocity. For various purge gas flow rates, desoption curves almost got together if they were plotted against dimensionless time. At a higher flow rate, mass transfer zone became narrower. Temperature drop in the bed was more fast and severe at higher flow rates and higher outer temperature. It was found out that desorption was almost completed when the temperature in the drop of the bed returned to the initial temperature before temperature drop. Desorption by vacuum purge was completed in shorter time than desorption by purge gas. Countercurrent purge was more effective than cocurrent purge.

Characteristics of the Interfacial Friction Factor in Countercurrent Two-Phase Flows (반류 2상유동에서의 계면마찰계수의 특성)

  • 이상천;김동수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.299-307
    • /
    • 1991
  • A unified correlation of the interfacial friction factor for air-water and steam-water flows in inclined rectangular channels has been developed. The correlation was expressed in the form of a power law of the liquid and the gas Reynolds number, and the liquid-to-gas viscosity ratio. In addition, a relation between the equivalent roughness and the intensity of wave height fluctuation of the interface has been investigated. A new dimensionless intensity of fluctuation including a liquid film Reynolds number is proposed. It has been shown that the dimensionless equivalent roughness, which is calculated from the Nikuradse equation, can be uniquely related to this dimensionless intensity of fluctuation for both air-water and steam-water flows.

RELAP5 Analysis of a Condensation Experiment in an Inverted U-tube

  • Park, Chul-Jin;Lee, Sang-Yong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.383-388
    • /
    • 1995
  • Two-phase transient phenomena in the noncondensable gas-filled closed loop was investigated numerically using the RELAP5/MOD3 version 3.1 computer code. The condensation heat transfer correlation for noncondensable gases was studied in detail. Two modes of the reflux condensation which can be characterized by countercurrent flow of steam and its condensed water and the oscillatory between reflux condensation and natural circulation were predicted well. However, the natural circulation mode which the condensed water carried over the U-bend concurrently with steam was failed to predict.

  • PDF

Gas Flow through Arrays of Spheres Coated by Liquid Film (액체 막이 입혀진 구 입자 배열을 지나는 기체 흐름)

  • Koo, Sangkyun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.646-652
    • /
    • 2009
  • Present study deals with a three phase flow problem of determining drag acting on spheres wetted by liquid flow by gas flow through the spheres in simple cubic (SC), body-center cubic (BCC) and face-centered cubic (FCC) array, respectively, when the inertia of gas is negligibly small. The liquid flow driven by gravity on the spheres is assumed to be unaffected by the countercurrent gas flow. A perturbation method coupled with a multipole expansion method is used to calculate the hydrodynamic interactions between spheres and hence determine the effect of liquid film and flow on the gas flow for each periodic array of spheres. An approximate method for evaluating the effect of the liquid film is also presented for simple estimations. It is found that the approximation results are in a reasonable agreement with the numerical calculations.

Characteristics of the Onset of Flooding for Countercurrent Air-Water Flow in Vertical Annuli with a Direct Injection Mode (수직 환상관내 반류 공기-물 유동에서 직접분사방식에 따른 플러딩 시작점 특성)

  • Lee, S.C.;Shin, I.H.;Lee, S.M.;Chung, M.;Kim, D.S.;Chang, W.P.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.266-274
    • /
    • 1996
  • An experimental work was conducted to investigate the characteristics of the onset of flooding in vertical annuli with a direct injection mode using air and water. The onset of flooding was determined by means of pressure drop measurement while the air velocity was increased gradually under fixed liquid flow rates. Data of the onset of flooding were collected for various combinations of the tube size and the nozzle number. A theoretical analysis of the onset of flooding was also performed based on an envelope theory. The result shows that the onset of flooding in small-scale annuli can be predicted relatively well by the theory. A modified Wallis parameter was used to investigate the scaling effect of flooding phenomena in the annuli, indicating a relatively reasonable result. The number of nozzle has no effect on the flooding velocity when liquid was injected through 2, 3, 4 and 6 nozzles but the initiation of flooding was significantly expedited when 12 nozzles were employed for liquid injection.

Characteristics of Bubble Flow Behavior in a Gas-liquid Countercurrent Bubble Column Bioreactor (기-액 향류 흐름 기포탑 생물 반응기에서 기포 흐름 거동 특성)

  • Son, Sung-Mo;Kang, Suk-Hwan;Lee, Chan-Gi;Jung, Sung-Hyun;Kang, Yong;Kim, Sang-Done
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.272-277
    • /
    • 2005
  • Characteristics of bubbling behavior and bubble properties were investigated in a gas-liquid countercurrent bubble column of in diameter 0.152 m and 3.5 m in height, respectively. Effects of gas and liquid velocities and bubble distribution mode(even, wall-side, central or asymmetric distribution) on the bubble properties such as chord length, frequency, rising velocity and holdup in the reactor were measured and examined by means of dual resistivity probe method. The bubble size, frequency and holdup increased with increasing gas($U_G$) or liquid velocity($U_L$). The rising velocity of bubbles increased with increasing $U_G$, whereas decreased with increasing $U_L$. The uniformity of bubble size distribution and bubble holdup decreased when the distribution mode of bubbles at the gas distributor was changed from even to wall-side, central or asymmetric. The central distribution of bubbles was better than asymmetric mode but worse than wall-side distribution, in considering the bubble holdup and uniformity of distribution.

A Semi-Empirical Correlation for an Adiabatic Interfacial Friction Factor (단열 계면 마찰계수에 대한 준 실험식)

  • Nam, Ho-Yun;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.108-118
    • /
    • 1994
  • A semi-empirical correlation has been developed for adiabatic interfacial friction factors in a long horizontal air-water countercurrent stratified flow conditions. Using a pipe and duct test sections, a series of experiments hate been conducted varying non-dimensional water depth and flow rates of air. On the basis of simultaneous measurement of the main flow parameters in a horizontal pipe and a duct, a semi-empirical correlation for the interfacial friction factor in a stratified flow regime has been developed employing a new concept of surface roughness in wavy flow. A total of 201 data point, including 15 concurrent pipe flow test data of others, have been used in the present analysis. A comparison between the data and the predictions of the present correlation shows that the agreement is within $\pm$30%.

  • PDF

KAIST-CIWH Computer Code and a Guide Chart to Avoid Condensation-Induced Water Hammer in Horizontal Pipes

  • Chun, Moon-Hyun;Yu, Seon-Oh
    • Nuclear Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.618-635
    • /
    • 2000
  • A total of 17 experimental data for the onset of slugging, which is assumed to be the precursor of the condensation-induced waterhammer (CIWH), have been obtained for various How rates of water Incorporating the most recent correlations of interfacial heat transfer and friction factor developed for a circular geometry and using an improved criterion of transition from stratified to a slug flow, two existing analytical models to predict lower and upper bounds for CIWH have been upgraded. Applicability of the present as well as existing CIWH models has been tested by comparison with two sets of CIWH data. The result of this comparison shows that the applicability of the present as well as existing models is reasonably good. Based on the present models for CIWH, a computer code entitled as“KAIST-CIWH”has been developed and sample guide charts to find CIWH free regions for a given combination of major flow parameters in a long horizontal pipe have been presented along with the results of parametric studies of major parameters (D, P, $T_{f,in}$, and L/D) on the critical inlet water flow rate($W_{f,in}_crit$ for both lower and upper bounds. In addition, two simple formulas for lower and upper bounds that can be used in an emergency for quick results have been presented.

  • PDF