• Title/Summary/Keyword: Cost of circuit breaker

Search Result 27, Processing Time 0.03 seconds

CAE Analysis of $SF_6$ Arc Plasma for a Gas Circuit Breaker Design (가스차단기 최적설계를 위한 $SF_6$ 아크 플라즈마 CAE 해석)

  • Lee Jong C.;Ahn Heui-Sub;Kim Youn J.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.365-368
    • /
    • 2002
  • The design of industrial arc plasma systems is still largely based on trial and error although the situation is rapidly improving because of the available computational power at a cost which is still fast coming down. The desire to predict the behavior of arc plasma system, thus reducing the development cost, has been the motivation of arc research. To interrupt fault current, the most enormous duty of a circuit breaker, is achieved by separating two contacts in a interruption medium, $SF_{6}$ gas or air etc., and arc plasma is inevitably established between the contacts. The arc must be controlled and interrupted at an appropriate current zero. In order to analyze arc behavior in $SF_{6}$ gas circuit breakers, a numerical calculation method combined with flow field and electromagnetic field has been developed. The method has been applied to model arc generated in the Aachen nozzle and compared the results with the experimental results. Next, we have simulated the unsteady flow characteristics to be induced by arcing of AC cycle, and conformed that the method can predict arc behavior in account of thermal transport to $SF_{6}$ gas around the arc, such as increase of arc voltage near current zero and dependency of arc radius on arc current to maintain constant arc current density.

  • PDF

Methods for Increasing the Interrupting Performance of Are Chamber in 460V / 50KA / 100AF Molded Case Circuit Breaker (460V / 50KA / 100AF 급 배선용 차단기의 소호부 차단 성능 향상 방법)

  • Cho, Sung-Hoon;Jung, Eui-Hwan;Lee, Han-Ju;Lim, Kee-Joe;Kim, Kil-Sou
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.105-105
    • /
    • 2010
  • Voltage circuit breakers are widely used in power distribution systems to interrupt fault current rapidly and to assure the reliability of the power supply. Power distribution system requires the transformer with higher capacity than ever, but this ever, but this may be the cause. of the increasing of short circuit current in contrast to conventional one when short-circuit accident is occurred. Therefore molded case circuit breaker improved in aspects of interrupting capacity of short circuit current in this system is needed. By using the proposed methods in this paper, such as new arc quenching structure of grid would contribute to minimizing the MCCB, realization of high interrupting performance and reducing the design time and development cost.

  • PDF

A Economic feasibility of Superconducting Fault Current Limiter in Korean Power System (초전도한류기의 계통도입을 위한 경제적 타당성 검토)

  • Kim Jong Yul;Lee Seong Ryul;Yoon Jae Young
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.421-423
    • /
    • 2004
  • As power system grows more complex and power demands increase, the fault current tends to gradually increase. In the near future, the fault current will exceed a circuit breaker rating for some substations, which is an especially important issue in the Seoul metropolitan area because of its highly meshed configuration. Currently, the Korean power system is regulated by changing the 154kV system configuration from a loop connection to a radial system, by splitting the bus where load balance can be achieved, and by upgrading the circuit breaker rating. A development project applying 154kV Superconducting Fault Current Limiter(SFCL) to 154kV transmission systems is proceeding with implementation slated for after 2010. In this paper, the expected price of SFCL in order to assure the economic feasibility is evaluated comparing with upgrading cost of ciui.1 breakers. The results show that the SFCL should be developed under seven times of price of circuit breaker to be competitive against upgrading circuit breakers.

  • PDF

Modeling of the HTS Fault Current Limiter Considering Quenching Characteristic (퀸칭 특성을 고려한 EMTDC 저항형 초전도 한류기 모텔링)

  • 윤재영;김종율;이승렬
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.2
    • /
    • pp.73-79
    • /
    • 2004
  • Nowadays, one of the serious problems in KEPCO system is the larger fault current than the SCC(Short Circuit Capacity) of circuit breaker. There are many alternatives to reduce the increased fault current such as isolations of bus ties, enhancement of SCC of circuit breaker, applications of HVDC-BTB(Back to Back) and FCL(fault current limiter). However, these alternatives have some drawbacks in viewpoints of system stability and cost. As the superconductivity technology has been developed, the HTS-FCL(High Temperature Superconductor-Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. Under this background, this paper presents the EMTDC model for resistive type HTS-FCL considering the nonlinear characteristic of final resistance value when quenching Phenomena occur.

Modeling of the HTS Fault Current Limiter Considering Quenching Characteristic (?칭 특성을 고려한 EMTDC 저항형 초전도 한류기 모텔링)

  • 윤재영;김종율;이승렬
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.2
    • /
    • pp.73-73
    • /
    • 2004
  • Nowadays, one of the serious problems in KEPCO system is the larger fault current than the SCC(Short Circuit Capacity) of circuit breaker. There are many alternatives to reduce the increased fault current such as isolations of bus ties, enhancement of SCC of circuit breaker, applications of HVDC-BTB(Back to Back) and FCL(fault current limiter). However, these alternatives have some drawbacks in viewpoints of system stability and cost. As the superconductivity technology has been developed, the HTS-FCL(High Temperature Superconductor-Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. Under this background, this paper presents the EMTDC model for resistive type HTS-FCL considering the nonlinear characteristic of final resistance value when quenching Phenomena occur.

Development of EMTDC model for Resistance type Fault Current Limiter considering transient characteristic (저항형초전도한류기 과도특성을 고려한 EMTDC 모델개발)

  • 윤재영;김종율;이승렬
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.1-7
    • /
    • 2003
  • Nowadays, one of the serious problems in KEPCO(Korea Electric Power Co-Operation) system is the more higher fault current than the SCC(Short Circuit Capacity) of circuit breaker. There are many alternatives to reduce the increased fault current such as isolations of bus ties, enhancement of SCC of circuit breaker, applications of HVDC-BTB(High Voltage Direct Current-Back to Back) and FCL(fault current limiter). But, these alternatives have some drawbacks in viewpoints of system stability and cost. As the superconductivity technology has been developed, the HTS-FCL(High Temperature Superconductor -Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. Under this background, this paper presents the EMTDC(Electro-Magnetic Transient Direct Current) model for resistance type HTS-FCL considering the nonlinear characteristic of final resistance value when quenching phenomena occur.

R-type HTS-FCL Model considering transient characteristics

  • Yoon Jae Young;Lee Seung Ryul;Kim Jong Yul
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.2
    • /
    • pp.35-38
    • /
    • 2005
  • One of the most serious problems in KEPCO system operation is higher fault current than the SCC(Short Circuit Capacity) of circuit breaker. There are many alternatives to reduce the increased fault current such as isolations of bus ties, enhancement of SCC of circuit breaker, applications of HVDC-BTB(Back to Back) and FCL(fault current limiter). But, these alternatives have some drawbacks in viewpoints of system stability and cost. As the superconductivity technology has been developed, the resistance type HTS-FCL(High Temperature Superconductor Fault Current Limiter) can be one of the most attractive alternatives to solve the fault current problem. To evaluate the accurate transient performance of resistance type HTS-FCL, it is needed that the dynamic simulation model considering transient characteristics during quenching and recovery state. Under this background, this paper presents the EMTDC model for resistance type HTS-FCL considering the nonlinear characteristic of final resistance value when quenching and recovery phenomena by fault current injection and clearing occurs.

A Theoretical Analysis on the Sharing of Circuit Breaker Replacement Costs by Power Providers: An Application of Sequential Equal Contributions Rule (발전사업자의 차단기 교체비용 분담에 대한 이론적 분석: 순차적 균등기여규칙의 활용)

  • Kwang-ho Kim
    • Environmental and Resource Economics Review
    • /
    • v.31 no.4
    • /
    • pp.571-595
    • /
    • 2022
  • This study theoretically analyzes the cost allocation of replacement costs that occur when existing operators have to replace circuit breakers due to the entry of new generators. We adopt the sequential equal contributions rule as the cost allocation rule, which is widely used in cost allocation problems in cooperative game theory. We derive various cost allocation plans based on several criteria and examine to what extent each alternative meets various desirable axioms. According to the analysis, (i) the alternative that excludes the cost of the new operator, residual value, and network operator and (ii) the alternative that excludes the cost of the new operator, residual value, and includes network operator are relatively superior to other schemes. We also identify a realistic plan by taking into account practical factors and analyze its axiomatic characteristics.

Study to Application of Controlled Switching HVAC Circuit Breaker in KEPCO Grid (개폐제어형 초고압차단기의 해외적용사례와 한전계통 적용검토)

  • Oh, Seung-Ryle;Kwak, Joo-Sik;Jeong, Moon-Gyu;Han, Ki-Seon;Goo, Sun-Geun;Ju, Hyoung-Jun;Park, Min-Hae;Kim, Hyun-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.433-434
    • /
    • 2015
  • Dictionary meaning of circuit-breaker is a mechanical switching device, capable of making, carrying and breaking currents under normal circuit conditions and also making, carrying for a specified time and breaking currents under specified abnormal circuit conditions such as those of short circuit. and it had been recognized as being operated simultaneously. Controlled Switching System(CSS), which is technology for individual pole operation, are widely used to reduce transient phenomenon, for example switching surges, inrush current, for a all switching cases and nowadays it have become and economical solution for a switching place. The conventional solution to these problem is the use of pre-insertion resistors of $520{\Omega}$. However, it is recognised that the cost for products and maintenance are expensive and this apparatus makes more complex the circuit-breaker mechanism. Korea Electric Power Cooperation (KEPCO) has been study for relevant CCS technology since pilot application in substation in 2003 and plan to apply the actual power grid in 2017. This paper deals with the investigation of international CCS operation status and preview for application in KEPCO power grid.

  • PDF

Improvement of Short Circuit Performance in 460[V]/400{A]/85(kA] Molded Case Circuit Breakers (460[V]/400[A]/85[kA] 배선용 차단기의 아크런너 변형을 통한 차단성능 향상)

  • Lee, Seung-Su;Her, June;Yoon, Jae-Hun;Kang, Seong-Hwa;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.394-394
    • /
    • 2009
  • Owing to the increasing number of intelligent homes(or called Smart home), the corresponding cost is much higher. Low voltage circuit breakers are widely used in the intelligent homes to interrupt fault current rapidly and to assure the reliability of the power supply. The distribution of magnetic field induced by arc current in the contact system of molded case circuit breaker(hereafter MCCB) depends on the shape, arrangement, and kinds of material of arc runner. This paper is focused on understanding the interrupting capability, more specifically of the arc runner, based on the shape of the contact system in the current MCCB. The magnetic driving force was calculated by using the flux densities induced by the arc current, which are obtained by three-dimensional finite element method. There is a need to assure that the optimum design required to analyze the electromagnetic forces of the contact system generated by current and the flux density be present. This is paper present our computational analysis on contact system in MCCB.

  • PDF