• Title/Summary/Keyword: Cost of Spare Parts

Search Result 45, Processing Time 0.025 seconds

Naval Vessel Spare Parts Demand Forecasting Using Data Mining (데이터마이닝을 활용한 해군함정 수리부속 수요예측)

  • Yoon, Hyunmin;Kim, Suhwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.253-259
    • /
    • 2017
  • Recent development in science and technology has modernized the weapon system of ROKN (Republic Of Korea Navy). Although the cost of purchasing, operating and maintaining the cutting-edge weapon systems has been increased significantly, the national defense expenditure is under a tight budget constraint. In order to maintain the availability of ships with low cost, we need accurate demand forecasts for spare parts. We attempted to find consumption pattern using data mining techniques. First we gathered a large amount of component consumption data through the DELIIS (Defense Logistics Intergrated Information System). Through data collection, we obtained 42 variables such as annual consumption quantity, ASL selection quantity, order-relase ratio. The objective variable is the quantity of spare parts purchased in f-year and MSE (Mean squared error) is used as the predictive power measure. To construct an optimal demand forecasting model, regression tree model, randomforest model, neural network model, and linear regression model were used as data mining techniques. The open software R was used for model construction. The results show that randomforest model is the best value of MSE. The important variables utilized in all models are consumption quantity, ASL selection quantity and order-release rate. The data related to the demand forecast of spare parts in the DELIIS was collected and the demand for the spare parts was estimated by using the data mining technique. Our approach shows improved performance in demand forecasting with higher accuracy then previous work. Also data mining can be used to identify variables that are related to demand forecasting.

Study for Determining an Inventory Level of Spare Parts according to System Utilization (시스템 가동률에 따른 수리 부속 제품의 재고 수준 결정에 관한 연구)

  • Jeong, Suk-Jae;Han, Sung-Hoon;Kim, Kyung-Sup
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.3
    • /
    • pp.117-126
    • /
    • 2007
  • It has been a major issue to repair the broken system quickly for improvement of productivity and utilization. Generally, high utilization of system requires the high amount of spare parts in inventory and inventory cost. Therefore, it is necessary to determine the proper amount of inventory with regard to utilization of system. This study designs a methodology for determining the proper amount of inventory level in a two-echelon spare parts distribution system. The requirements are to satisfy proper customer demands at a distribution center and to maintain over the utilization of the whole system at customers. This methodology minimizes total inventory investment at a distribution center and customers.

Optimization for Inventory Level of Spare Parts Considering System Availability (시스템 가용도를 고려한 수리부품의 재고수준 최적화)

  • Kim, Heung-Seob;Kim, Pansoo
    • Korean Management Science Review
    • /
    • v.31 no.2
    • /
    • pp.1-13
    • /
    • 2014
  • In almost all of the organizations, the cost for acquiring and maintaining the inventory takes a considerable portion of the management budget, and thus a certain constraint is set upon the budget itself. The previous studies on inventory control for each item that aimed to improve the fill rate, backorder, and the expenditure on inventory are fitting for the commercially-operated SCM, but show some discrepancies when they are applied to the spare parts for repairing disabled systems. Therefore, many studies on systematic approach concept considering spare parts of various kinds simultaneously have been conducted to achieve effective performance for the inventory control at a lower cost, and primarily, METRIC series models can be named. However, the past studies were limited when dealing with the probability distributions for representing the situation on demand and transportation of the parts, with the (S-1, S) inventory control policy, and so on. To address these shortcomings, the Continuous Time Markov Chain (CTMC) model, which considers the phase-type distributions and the (s, Q) inventory control policies to best describe the real-world situations inclusively, is presented in this study. Additionally, by considering the cost versus the system availability, the optimization of the inventory level, based on this model, is also covered.

Spare Part Optimization of MIME Systems using Simulation and Genetic Algorithms under Availability (가용도 제약하에 MIME 시스템에서 유전알고리즘과 시뮬레이션을 이용한 수리부속 최적화)

  • Chung, Il-Han;Yun, Won-Young
    • Journal of Korean Society for Quality Management
    • /
    • v.36 no.2
    • /
    • pp.9-19
    • /
    • 2008
  • Spare part problem of MIME (Multi Indenture Multi Echelon) system under availability constraint has been studied for several decades. In most of existing studies, it was very difficult to obtain the optimal numbers of spare parts and some approximate methods were proposed under many restrictions. In this paper, we consider a simulation to estimate the total cost rate and system availability and a genetic algorithm to obtain the optimal numbers of spare parts. Some numerical examples are also studied.

Study of Optimal Maintenance Float(M/F) Calculation Method (최적의 정비대체장비(M/F) 산출방안 비교 연구)

  • Lee, Hak-Jae;Jung, Kwang-Kyun;Kim, Jae-Hwang;Lee, Jong-Sin;Lee, Myoung-Jin
    • Journal of Applied Reliability
    • /
    • v.16 no.3
    • /
    • pp.192-201
    • /
    • 2016
  • Purpose: In this paper, we propose the output model of the optimal inventory requirements of the Maintenance Float (M/F). Weapon systems were modernized and increased costs. Thus, the complexity increases with. Alternatives to achieve the goal of availability of weapon systems and to reduce life-cycle cost are required. Especially, securing spare parts is more effective than adding the amount of equipment or maintenance facilities to achieve the goal of availability and reduce life cycle costs. However, securing spare parts and repair costs are directly related, so exact requirements are needed. Methods: Three kinds of methods (Calculation method of applying the Poisson distribution, Calculation method of considering the number of CSP, and Calculation method of applying M&S program) that this paper proposed compare the influence of the availability and the amount of spare parts. Result: We calculate the cost of M/F when the operational availability is over than 80% and compare that result. The biggest cost was calculated from the Poisson distribution method. We found that requirements and unit price is the key factor that gives a significant effect. Conclusion: These three kinds of methods can be used as a basis for Maintenance Float calculation. Among them, the calculation method based on CSP is optimal replacement equipment requirements calculation method.

Some New Results on Uncertain Age Replacement Policy

  • Zhang, Chunxiao;Guo, Congrong
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.1
    • /
    • pp.41-45
    • /
    • 2013
  • Age replacement policy is a commonly policy in maintenance management of spare part. It means that a spare part is always replaced at failure or fixed time after its installation, whichever occurs first. An optimal age replacement policy of spare parts concerns with finding the optimal replacement time determined by minimizing the expected cost per unit time. The age of the part was generally assumed to be a random variable in the past literatures, but in many situations, there are few or even no observed data to estimate the probability distribution of part's lifetime. In order to solve this phenomenon, a new uncertain age replacement policy has been proposed recently, in which the age of the part was assumed to be an uncertain variable. This paper discusses the optimal age replacement policies by dealing with the parts' lifetimes as different distributed uncertain variables. Several results on the optimal age replacement time are provided when the lifetimes are described by the uncertain linear, zigzag and lognormal distributions.

An Algorithm for Determining Consumable Spare Parts Requirement under Avialability Constraint (운용가용도 제약하에서의 소모성 예비부품의 구매량 결정을 위한 해법)

  • 오근태;나윤군
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.3
    • /
    • pp.83-94
    • /
    • 2001
  • In this paper, the consumable spare parts requirement determination problem of newly procured equipment systems is considered. The problem is formulated as the cost minimization problem with operational availability constraint. Assuming part failure rate is constant during operational period, an analytical method is developed to obtain spare part requirements. Since this solution tends to overestimate the requirements, a fast search simulation procedure is introduced to adjust it to the realistic solution. The analytical solution procedure and the simulation procedure are performed recursively until a near optimal solution is achieved. The experimental results show that the near optimal solution is approached in a fairly short amount of time.

  • PDF

A FOQ Model for Spare-Part Inventory Control (예비품(豫備品) 재고관리(在庫管理)를 위한 정량발주모형(定量發注模型))

  • Jeong, Sang-Il;Sin, Ju-Hang;Park, Yeong-Taek
    • Journal of Korean Society for Quality Management
    • /
    • v.18 no.2
    • /
    • pp.9-17
    • /
    • 1990
  • This paper deals with a FOQ( ; fixed-order quantity) model for spare-part inventory control. In a spare-part inventory problem, stock depletion arises not from external market demand but from internal demand resulting from failures of parts in use. The problem differs from the classical inventory problem in that the demand for a failed part never arises more during stockout period, since the unit remains inoperative when stockout occurs until the failed part is replaced by new one. In the problem under consideration, n identical units are operating simultaneously and failed one is replaced immediately by new one if on-hand spares remain. In order to replenish spares, an order with quantity Q is placed whenever the number of on-hand spares falls to levels. The average annual cost of operating the spare-part inventory system is derived under the assumption that both lifetime of a part and replenishment lead-time distributions are exponential.

  • PDF

A Study on the Estimation Method of Optimal Spare for Motor Block (Motor Block의 Optimal Spare 산출 방안)

  • Jang, Ju-Su;Yun, Cha-Jung;Lee, Eun-Kyu;Lee, Eul-Jae;Jang, Jeong-Hoon;Kim, Yong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2567-2572
    • /
    • 2011
  • It is the key component that motor block system affect safety and performance of railway. It is very important to examine the performance of motor block for improvement of safety and reliability of rolling stock. As such, the motor block is an essential part of rolling stock. But provisioning quantities and spare quantities depend on the operator' experience. There are many problems that occur lots of spare or lack of spare. If there are lots of spare, it is difficult to keep the circumstance by cost issues. On the contrary, if there are lack of spare, it may have a adverse effect on the whole railway. Thus, this study offers method to estimate optimal spare of motor block using the analysis of data related with Failure rate, MTBF, standards and guidelines. And we expect this study to contribute to determine optimal spare parts.

  • PDF

THE DESIGN OF AN OPTIMAL SPARE KIT FOR WEAPON SYSTEMS

  • Oh Kwan-Chi
    • Journal of the military operations research society of Korea
    • /
    • v.1 no.1
    • /
    • pp.131-135
    • /
    • 1975
  • One of the pending issues of the Ministry of Defense is the efficient management of space parts for the weapon systems. It has been known that more than 000 million dollars are needed for spare parts for the weapon systems annually. Though the problem demands a serious consideration, there has not been any systematic study on the problem as far as the author knows. One way to approach the problem is through an investigation of the system reliability under constraints. A measure of how well a system performs or meets its design objectives is provided by the concept of system reliability. If successful operation is desired for a specified period of time, reliability is defined as the probability that the system will perform satisfactorily for the required time period. This interpretation of reliability is normally applied to devices which are subject to random failures such as electrical or mechanical systems. It has been found necessary to express system reliability in terms of the reliability of the components or subsystems which comprise the system. The major subsystems of an aircraft, for example, include the electronics, powerplant, airframe and armament subsystems. Therefore, the optimal spare part kit can be found by maximizing the system reliability subject to cost or other constraints.

  • PDF